Cargando…

Epigenetic analyses in blood cells of men suspected of prostate cancer predict the outcome of biopsy better than serum PSA levels

Lymphocytes from the peripheral blood of patients with prostate cancer—the most frequent (noncutaneous) tumor in men—display epigenetic aberrations (altered modes of allelic replication) characteristic of the malignant phenotype. The present study aims to determine whether replication aberrations ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Cytron, Samuel, Stepnov, Evgeni, Bounkin, Igor, Mashevich, Maya, Dotan, Aviva, Avivi, Lydia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156318/
https://www.ncbi.nlm.nih.gov/pubmed/21949550
http://dx.doi.org/10.1007/s13148-011-0029-3
Descripción
Sumario:Lymphocytes from the peripheral blood of patients with prostate cancer—the most frequent (noncutaneous) tumor in men—display epigenetic aberrations (altered modes of allelic replication) characteristic of the malignant phenotype. The present study aims to determine whether replication aberrations add certainty to the suspicion of prostate cancer provided by the prostate-specific antigen (PSA) blood test. The allelic replication mode (whether synchronous or asynchronous) was exemplified for RB1 and AML1. These two genes normally exhibit a synchronous mode of allelic replication. Fluorescence in situ hybridization (FISH) replication assay was used for replication analyses. The FISH assays were applied to PHA-stimulated lymphocytes, established from peripheral blood samples of 35 men referred to biopsy due to suspected prostate cancer. Following biopsy 13 out of these 35 men were found positive for prostate malignancy. The FISH assay—showing asynchronous or synchronous RB1 and AML1 replication—was able to predict, respectively, the results of all biopsy-positive men and in 18 out of the 22 biopsy-negative ones. These measurements, distinguishing biopsy-positive from biopsy-negative men, were highly significant (P < 10(−8); 100% sensitivity and 81.8% specificity). Yet, distinguishing between the two groups of men based on the PSA measurements was nonsignificant (P > 0.70). The FISH replication assay applied to peripheral blood lymphocytes of 35 men referred for biopsy significantly predicted the outcome of the pathological examination, more precisely than the serum PSA test. As such, the epigenetic alteration offers a potential noninvasive blood marker, complementary to the PSA, for a preliminary prostate cancer diagnosis.