Cargando…
Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm
Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157361/ https://www.ncbi.nlm.nih.gov/pubmed/21858048 http://dx.doi.org/10.1371/journal.pone.0023257 |
_version_ | 1782210288790011904 |
---|---|
author | Woelke, Anna Lena von Eichborn, Joachim Murgueitio, Manuela S. Worth, Catherine L. Castiglione, Filippo Preissner, Robert |
author_facet | Woelke, Anna Lena von Eichborn, Joachim Murgueitio, Manuela S. Worth, Catherine L. Castiglione, Filippo Preissner, Robert |
author_sort | Woelke, Anna Lena |
collection | PubMed |
description | Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy. |
format | Online Article Text |
id | pubmed-3157361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31573612011-08-19 Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm Woelke, Anna Lena von Eichborn, Joachim Murgueitio, Manuela S. Worth, Catherine L. Castiglione, Filippo Preissner, Robert PLoS One Research Article Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy. Public Library of Science 2011-08-17 /pmc/articles/PMC3157361/ /pubmed/21858048 http://dx.doi.org/10.1371/journal.pone.0023257 Text en Woelke et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Woelke, Anna Lena von Eichborn, Joachim Murgueitio, Manuela S. Worth, Catherine L. Castiglione, Filippo Preissner, Robert Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title | Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title_full | Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title_fullStr | Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title_full_unstemmed | Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title_short | Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm |
title_sort | development of immune-specific interaction potentials and their application in the multi-agent-system vaccimm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157361/ https://www.ncbi.nlm.nih.gov/pubmed/21858048 http://dx.doi.org/10.1371/journal.pone.0023257 |
work_keys_str_mv | AT woelkeannalena developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm AT voneichbornjoachim developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm AT murgueitiomanuelas developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm AT worthcatherinel developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm AT castiglionefilippo developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm AT preissnerrobert developmentofimmunespecificinteractionpotentialsandtheirapplicationinthemultiagentsystemvaccimm |