Cargando…
The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth
Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157460/ https://www.ncbi.nlm.nih.gov/pubmed/21858205 http://dx.doi.org/10.1371/journal.pone.0023678 |
_version_ | 1782210310733561856 |
---|---|
author | Puk, Oliver Möller, Gabriele Geerlof, Arie Krowiorz, Kathrin Ahmad, Nafees Wagner, Sibylle Adamski, Jerzy de Angelis, Martin Hrabé Graw, Jochen |
author_facet | Puk, Oliver Möller, Gabriele Geerlof, Arie Krowiorz, Kathrin Ahmad, Nafees Wagner, Sibylle Adamski, Jerzy de Angelis, Martin Hrabé Graw, Jochen |
author_sort | Puk, Oliver |
collection | PubMed |
description | Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU) screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723), Gja3 (MGI: 95714), and Ift88 (MGI: 98715). While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9(Y162C) carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG) did not show any abnormality. However, the analysis of head-tracking response of the Fgf9(Y162C) mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9(Y162C) suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9(Y162C) lenses remained transparent but developed age-related cataracts. Taken together, Fgf9(Y162C) is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results underline the importance of allelic series to fully understand multiple functions of a gene. |
format | Online Article Text |
id | pubmed-3157460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31574602011-08-19 The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth Puk, Oliver Möller, Gabriele Geerlof, Arie Krowiorz, Kathrin Ahmad, Nafees Wagner, Sibylle Adamski, Jerzy de Angelis, Martin Hrabé Graw, Jochen PLoS One Research Article Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU) screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723), Gja3 (MGI: 95714), and Ift88 (MGI: 98715). While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9(Y162C) carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG) did not show any abnormality. However, the analysis of head-tracking response of the Fgf9(Y162C) mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9(Y162C) suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9(Y162C) lenses remained transparent but developed age-related cataracts. Taken together, Fgf9(Y162C) is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results underline the importance of allelic series to fully understand multiple functions of a gene. Public Library of Science 2011-08-17 /pmc/articles/PMC3157460/ /pubmed/21858205 http://dx.doi.org/10.1371/journal.pone.0023678 Text en Puk et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Puk, Oliver Möller, Gabriele Geerlof, Arie Krowiorz, Kathrin Ahmad, Nafees Wagner, Sibylle Adamski, Jerzy de Angelis, Martin Hrabé Graw, Jochen The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title | The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title_full | The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title_fullStr | The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title_full_unstemmed | The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title_short | The Pathologic Effect of a Novel Neomorphic Fgf9(Y162C) Allele Is Restricted to Decreased Vision and Retarded Lens Growth |
title_sort | pathologic effect of a novel neomorphic fgf9(y162c) allele is restricted to decreased vision and retarded lens growth |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157460/ https://www.ncbi.nlm.nih.gov/pubmed/21858205 http://dx.doi.org/10.1371/journal.pone.0023678 |
work_keys_str_mv | AT pukoliver thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT mollergabriele thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT geerlofarie thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT krowiorzkathrin thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT ahmadnafees thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT wagnersibylle thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT adamskijerzy thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT deangelismartinhrabe thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT grawjochen thepathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT pukoliver pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT mollergabriele pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT geerlofarie pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT krowiorzkathrin pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT ahmadnafees pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT wagnersibylle pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT adamskijerzy pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT deangelismartinhrabe pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth AT grawjochen pathologiceffectofanovelneomorphicfgf9y162calleleisrestrictedtodecreasedvisionandretardedlensgrowth |