Cargando…
Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data
PURPOSE: Surgical simulation should reflect the 3D movement of dentition and the resultant movement of the osteotomized segments, which can influence surgical outcome. The present study was aimed at developing a new simulation system that enables virtual osteotomy of a given surgical situation and e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157604/ https://www.ncbi.nlm.nih.gov/pubmed/20981462 http://dx.doi.org/10.1007/s10006-010-0247-4 |
_version_ | 1782210320323837952 |
---|---|
author | Mori, Yoshihide Shimizu, Hidetaka Minami, Katsuhiro Kwon, Tae-Geon Mano, Takamitsu |
author_facet | Mori, Yoshihide Shimizu, Hidetaka Minami, Katsuhiro Kwon, Tae-Geon Mano, Takamitsu |
author_sort | Mori, Yoshihide |
collection | PubMed |
description | PURPOSE: Surgical simulation should reflect the 3D movement of dentition and the resultant movement of the osteotomized segments, which can influence surgical outcome. The present study was aimed at developing a new simulation system that enables virtual osteotomy of a given surgical situation and evaluation of the bony interference between the osteotomized segments of the mandible. SUBJECTS AND METHODS: The data of 3D computer tomography (CT) for maxillomandibular dental casts were integrated into the standard coordinates of a 3D cephalogram. To evaluate the accuracy of the system, measurement errors of the 3D CT virtual model from a dry skull were compared with the computer simulation system and a contact-type 3D digitizer. To examine the clinical accessibility, 15 mandibular prognathism patients with mild to severe asymmetry were evaluated with the simulation program. RESULTS: The average error of measurement in all directions was 1.31 mm. It was possible to simulate various osteotomy procedures by conversion of the 3D coordinates of the dental cast and CT data into the standard coordinate system of a 3D cephalogram. Using this simulation system, it was possible to prevent condylar torque or segment malpositioning by removing the bony interference visualized by a 3D virtual model. CONCLUSION: A new system, which enables the precise visualization of osteotomized segments and calculation of bony interference, was proposed in the present study. This new system provides an acceptable precision of treatment planning of orthognathic surgery, especially for facial asymmetry. |
format | Online Article Text |
id | pubmed-3157604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-31576042011-09-21 Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data Mori, Yoshihide Shimizu, Hidetaka Minami, Katsuhiro Kwon, Tae-Geon Mano, Takamitsu Oral Maxillofac Surg Original Article PURPOSE: Surgical simulation should reflect the 3D movement of dentition and the resultant movement of the osteotomized segments, which can influence surgical outcome. The present study was aimed at developing a new simulation system that enables virtual osteotomy of a given surgical situation and evaluation of the bony interference between the osteotomized segments of the mandible. SUBJECTS AND METHODS: The data of 3D computer tomography (CT) for maxillomandibular dental casts were integrated into the standard coordinates of a 3D cephalogram. To evaluate the accuracy of the system, measurement errors of the 3D CT virtual model from a dry skull were compared with the computer simulation system and a contact-type 3D digitizer. To examine the clinical accessibility, 15 mandibular prognathism patients with mild to severe asymmetry were evaluated with the simulation program. RESULTS: The average error of measurement in all directions was 1.31 mm. It was possible to simulate various osteotomy procedures by conversion of the 3D coordinates of the dental cast and CT data into the standard coordinate system of a 3D cephalogram. Using this simulation system, it was possible to prevent condylar torque or segment malpositioning by removing the bony interference visualized by a 3D virtual model. CONCLUSION: A new system, which enables the precise visualization of osteotomized segments and calculation of bony interference, was proposed in the present study. This new system provides an acceptable precision of treatment planning of orthognathic surgery, especially for facial asymmetry. Springer-Verlag 2010-10-28 2011 /pmc/articles/PMC3157604/ /pubmed/20981462 http://dx.doi.org/10.1007/s10006-010-0247-4 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Original Article Mori, Yoshihide Shimizu, Hidetaka Minami, Katsuhiro Kwon, Tae-Geon Mano, Takamitsu Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title | Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title_full | Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title_fullStr | Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title_full_unstemmed | Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title_short | Development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
title_sort | development of a simulation system in mandibular orthognathic surgery based on integrated three-dimensional data |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157604/ https://www.ncbi.nlm.nih.gov/pubmed/20981462 http://dx.doi.org/10.1007/s10006-010-0247-4 |
work_keys_str_mv | AT moriyoshihide developmentofasimulationsysteminmandibularorthognathicsurgerybasedonintegratedthreedimensionaldata AT shimizuhidetaka developmentofasimulationsysteminmandibularorthognathicsurgerybasedonintegratedthreedimensionaldata AT minamikatsuhiro developmentofasimulationsysteminmandibularorthognathicsurgerybasedonintegratedthreedimensionaldata AT kwontaegeon developmentofasimulationsysteminmandibularorthognathicsurgerybasedonintegratedthreedimensionaldata AT manotakamitsu developmentofasimulationsysteminmandibularorthognathicsurgerybasedonintegratedthreedimensionaldata |