Cargando…
AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment
BACKGROUND: Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprieta...
Autores principales: | Stålring, Jonna C, Carlsson, Lars A, Almeida, Pedro, Boyer, Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158423/ https://www.ncbi.nlm.nih.gov/pubmed/21798025 http://dx.doi.org/10.1186/1758-2946-3-28 |
Ejemplares similares
-
QSAR-Co-X: an open source toolkit for multitarget QSAR modelling
por: Halder, Amit Kumar, et al.
Publicado: (2021) -
QSAR with experimental and predictive distributions: an information theoretic approach for assessing model quality
por: Wood, David J., et al.
Publicado: (2013) -
Brunn: An open source laboratory information system for microplates with a graphical plate layout design process
por: Alvarsson, Jonathan, et al.
Publicado: (2011) -
TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics
por: Jobb, Gangolf, et al.
Publicado: (2004) -
EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model
por: Menegaldo, Luciano Luporini, et al.
Publicado: (2014)