Cargando…

Bioassays for Monitoring Insecticide Resistance

Pest resistance to pesticides is an increasing problem because pesticides are an integral part of high-yielding production agriculture. When few products are labeled for an individual pest within a particular crop system, chemical control options are limited. Therefore, the same product(s) are used...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Audra L.E., Tindall, Kelly, Leonard, B. Rogers
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159656/
https://www.ncbi.nlm.nih.gov/pubmed/21248689
http://dx.doi.org/10.3791/2129
Descripción
Sumario:Pest resistance to pesticides is an increasing problem because pesticides are an integral part of high-yielding production agriculture. When few products are labeled for an individual pest within a particular crop system, chemical control options are limited. Therefore, the same product(s) are used repeatedly and continual selection pressure is placed on the target pest. There are both financial and environmental costs associated with the development of resistant populations. The cost of pesticide resistance has been estimated at approximately $ 1.5 billion annually in the United States. This paper will describe protocols, currently used to monitor arthropod (specifically insects) populations for the development of resistance. The adult vial test is used to measure the toxicity to contact insecticides and a modification of this test is used for plant-systemic insecticides. In these bioassays, insects are exposed to technical grade insecticide and responses (mortality) recorded at a specific post-exposure interval. The mortality data are subjected to Log Dose probit analysis to generate estimates of a lethal concentration that provides mortality to 50% (LC(50)) of the target populations and a series of confidence limits (CL's) as estimates of data variability. When these data are collected for a range of insecticide-susceptible populations, the LC(50) can be used as baseline data for future monitoring purposes. After populations have been exposed to products, the results can be compared to a previously determined LC(50) using the same methodology.