Cargando…
A pharmacogenomic method for individualized prediction of drug sensitivity
Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic ac...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159972/ https://www.ncbi.nlm.nih.gov/pubmed/21772261 http://dx.doi.org/10.1038/msb.2011.47 |
_version_ | 1782210502502383616 |
---|---|
author | Cohen, Adam L Soldi, Raffaella Zhang, Haiyu Gustafson, Adam M Wilcox, Ryan Welm, Bryan E Chang, Jeffrey T Johnson, Evan Spira, Avrum Jeffrey, Stefanie S Bild, Andrea H |
author_facet | Cohen, Adam L Soldi, Raffaella Zhang, Haiyu Gustafson, Adam M Wilcox, Ryan Welm, Bryan E Chang, Jeffrey T Johnson, Evan Spira, Avrum Jeffrey, Stefanie S Bild, Andrea H |
author_sort | Cohen, Adam L |
collection | PubMed |
description | Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation. |
format | Online Article Text |
id | pubmed-3159972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | European Molecular Biology Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-31599722011-08-24 A pharmacogenomic method for individualized prediction of drug sensitivity Cohen, Adam L Soldi, Raffaella Zhang, Haiyu Gustafson, Adam M Wilcox, Ryan Welm, Bryan E Chang, Jeffrey T Johnson, Evan Spira, Avrum Jeffrey, Stefanie S Bild, Andrea H Mol Syst Biol Article Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation. European Molecular Biology Organization 2011-07-19 /pmc/articles/PMC3159972/ /pubmed/21772261 http://dx.doi.org/10.1038/msb.2011.47 Text en Copyright © 2011, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by-nc-sa/3.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission. |
spellingShingle | Article Cohen, Adam L Soldi, Raffaella Zhang, Haiyu Gustafson, Adam M Wilcox, Ryan Welm, Bryan E Chang, Jeffrey T Johnson, Evan Spira, Avrum Jeffrey, Stefanie S Bild, Andrea H A pharmacogenomic method for individualized prediction of drug sensitivity |
title | A pharmacogenomic method for individualized prediction of drug sensitivity |
title_full | A pharmacogenomic method for individualized prediction of drug sensitivity |
title_fullStr | A pharmacogenomic method for individualized prediction of drug sensitivity |
title_full_unstemmed | A pharmacogenomic method for individualized prediction of drug sensitivity |
title_short | A pharmacogenomic method for individualized prediction of drug sensitivity |
title_sort | pharmacogenomic method for individualized prediction of drug sensitivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159972/ https://www.ncbi.nlm.nih.gov/pubmed/21772261 http://dx.doi.org/10.1038/msb.2011.47 |
work_keys_str_mv | AT cohenadaml apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT soldiraffaella apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT zhanghaiyu apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT gustafsonadamm apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT wilcoxryan apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT welmbryane apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT changjeffreyt apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT johnsonevan apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT spiraavrum apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT jeffreystefanies apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT bildandreah apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT cohenadaml pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT soldiraffaella pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT zhanghaiyu pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT gustafsonadamm pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT wilcoxryan pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT welmbryane pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT changjeffreyt pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT johnsonevan pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT spiraavrum pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT jeffreystefanies pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity AT bildandreah pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity |