Cargando…

A pharmacogenomic method for individualized prediction of drug sensitivity

Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Cohen, Adam L, Soldi, Raffaella, Zhang, Haiyu, Gustafson, Adam M, Wilcox, Ryan, Welm, Bryan E, Chang, Jeffrey T, Johnson, Evan, Spira, Avrum, Jeffrey, Stefanie S, Bild, Andrea H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Molecular Biology Organization 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159972/
https://www.ncbi.nlm.nih.gov/pubmed/21772261
http://dx.doi.org/10.1038/msb.2011.47
_version_ 1782210502502383616
author Cohen, Adam L
Soldi, Raffaella
Zhang, Haiyu
Gustafson, Adam M
Wilcox, Ryan
Welm, Bryan E
Chang, Jeffrey T
Johnson, Evan
Spira, Avrum
Jeffrey, Stefanie S
Bild, Andrea H
author_facet Cohen, Adam L
Soldi, Raffaella
Zhang, Haiyu
Gustafson, Adam M
Wilcox, Ryan
Welm, Bryan E
Chang, Jeffrey T
Johnson, Evan
Spira, Avrum
Jeffrey, Stefanie S
Bild, Andrea H
author_sort Cohen, Adam L
collection PubMed
description Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation.
format Online
Article
Text
id pubmed-3159972
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher European Molecular Biology Organization
record_format MEDLINE/PubMed
spelling pubmed-31599722011-08-24 A pharmacogenomic method for individualized prediction of drug sensitivity Cohen, Adam L Soldi, Raffaella Zhang, Haiyu Gustafson, Adam M Wilcox, Ryan Welm, Bryan E Chang, Jeffrey T Johnson, Evan Spira, Avrum Jeffrey, Stefanie S Bild, Andrea H Mol Syst Biol Article Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation. European Molecular Biology Organization 2011-07-19 /pmc/articles/PMC3159972/ /pubmed/21772261 http://dx.doi.org/10.1038/msb.2011.47 Text en Copyright © 2011, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by-nc-sa/3.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.
spellingShingle Article
Cohen, Adam L
Soldi, Raffaella
Zhang, Haiyu
Gustafson, Adam M
Wilcox, Ryan
Welm, Bryan E
Chang, Jeffrey T
Johnson, Evan
Spira, Avrum
Jeffrey, Stefanie S
Bild, Andrea H
A pharmacogenomic method for individualized prediction of drug sensitivity
title A pharmacogenomic method for individualized prediction of drug sensitivity
title_full A pharmacogenomic method for individualized prediction of drug sensitivity
title_fullStr A pharmacogenomic method for individualized prediction of drug sensitivity
title_full_unstemmed A pharmacogenomic method for individualized prediction of drug sensitivity
title_short A pharmacogenomic method for individualized prediction of drug sensitivity
title_sort pharmacogenomic method for individualized prediction of drug sensitivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159972/
https://www.ncbi.nlm.nih.gov/pubmed/21772261
http://dx.doi.org/10.1038/msb.2011.47
work_keys_str_mv AT cohenadaml apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT soldiraffaella apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT zhanghaiyu apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT gustafsonadamm apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT wilcoxryan apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT welmbryane apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT changjeffreyt apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT johnsonevan apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT spiraavrum apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT jeffreystefanies apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT bildandreah apharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT cohenadaml pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT soldiraffaella pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT zhanghaiyu pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT gustafsonadamm pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT wilcoxryan pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT welmbryane pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT changjeffreyt pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT johnsonevan pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT spiraavrum pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT jeffreystefanies pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity
AT bildandreah pharmacogenomicmethodforindividualizedpredictionofdrugsensitivity