Cargando…
A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration
We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way t...
Autores principales: | Henson, Richard N., Wakeman, Daniel G., Litvak, Vladimir, Friston, Karl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/ https://www.ncbi.nlm.nih.gov/pubmed/21904527 http://dx.doi.org/10.3389/fnhum.2011.00076 |
Ejemplares similares
-
A Parametric Empirical Bayesian framework for fMRI‐constrained MEG/EEG source reconstruction
por: Henson, Richard N., et al.
Publicado: (2010) -
A multi-subject, multi-modal human neuroimaging dataset
por: Wakeman, Daniel G, et al.
Publicado: (2015) -
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM()
por: López, J.D., et al.
Publicado: (2014) -
EEG and MEG Data Analysis in SPM8
por: Litvak, Vladimir, et al.
Publicado: (2011) -
Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches
por: Belardinelli, Paolo, et al.
Publicado: (2012)