Cargando…
Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters
BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160843/ https://www.ncbi.nlm.nih.gov/pubmed/21887234 http://dx.doi.org/10.1371/journal.pone.0023137 |
_version_ | 1782210588281143296 |
---|---|
author | Chang, Ying-Jui Yeh, Min-Li Li, Yu-Chuan Hsu, Chien-Yeh Lin, Chao-Cheng Hsu, Meng-Shiuan Chiu, Wen-Ta |
author_facet | Chang, Ying-Jui Yeh, Min-Li Li, Yu-Chuan Hsu, Chien-Yeh Lin, Chao-Cheng Hsu, Meng-Shiuan Chiu, Wen-Ta |
author_sort | Chang, Ying-Jui |
collection | PubMed |
description | BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings. |
format | Online Article Text |
id | pubmed-3160843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31608432011-09-01 Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters Chang, Ying-Jui Yeh, Min-Li Li, Yu-Chuan Hsu, Chien-Yeh Lin, Chao-Cheng Hsu, Meng-Shiuan Chiu, Wen-Ta PLoS One Research Article BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings. Public Library of Science 2011-08-24 /pmc/articles/PMC3160843/ /pubmed/21887234 http://dx.doi.org/10.1371/journal.pone.0023137 Text en Chang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chang, Ying-Jui Yeh, Min-Li Li, Yu-Chuan Hsu, Chien-Yeh Lin, Chao-Cheng Hsu, Meng-Shiuan Chiu, Wen-Ta Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title | Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title_full | Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title_fullStr | Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title_full_unstemmed | Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title_short | Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters |
title_sort | predicting hospital-acquired infections by scoring system with simple parameters |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160843/ https://www.ncbi.nlm.nih.gov/pubmed/21887234 http://dx.doi.org/10.1371/journal.pone.0023137 |
work_keys_str_mv | AT changyingjui predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT yehminli predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT liyuchuan predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT hsuchienyeh predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT linchaocheng predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT hsumengshiuan predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters AT chiuwenta predictinghospitalacquiredinfectionsbyscoringsystemwithsimpleparameters |