Cargando…
Characterization of a Bayesian genetic clustering algorithm based on a Dirichlet process prior and comparison among Bayesian clustering methods
BACKGROUND: A Bayesian approach based on a Dirichlet process (DP) prior is useful for inferring genetic population structures because it can infer the number of populations and the assignment of individuals simultaneously. However, the properties of the DP prior method are not well understood, and t...
Autores principales: | Onogi, Akio, Nurimoto, Masanobu, Morita, Mitsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161044/ https://www.ncbi.nlm.nih.gov/pubmed/21708038 http://dx.doi.org/10.1186/1471-2105-12-263 |
Ejemplares similares
-
Bayesian estimation in animal breeding using the Dirichlet process prior for correlated random effects
por: Merwe, Abraham Johannes van der, et al.
Publicado: (2003) -
Local Bayesian Dirichlet mixing of imperfect models
por: Kejzlar, Vojtech, et al.
Publicado: (2023) -
Bayesian Distance Clustering
por: Duan, Leo L, et al.
Publicado: (2021) -
Bayesian cluster analysis
por: Wade, S.
Publicado: (2023) -
Hierarchical Dirichlet process model for gene expression clustering
por: Wang, Liming, et al.
Publicado: (2013)