Cargando…
Evolving scalable and modular adaptive networks with Developmental Symbolic Encoding
Evolutionary neural networks, or neuroevolution, appear to be a promising way to build versatile adaptive systems, combining evolution and learning. One of the most challenging problems of neuroevolution is finding a scalable and robust genetic representation, which would allow to effectively grow i...
Autor principal: | Suchorzewski, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161195/ https://www.ncbi.nlm.nih.gov/pubmed/21957432 http://dx.doi.org/10.1007/s12065-011-0057-0 |
Ejemplares similares
-
Modularity, criticality, and evolvability of a developmental gene regulatory network
por: Verd, Berta, et al.
Publicado: (2019) -
Cuspidal modular symbols are transportable
por: Stein, W A, et al.
Publicado: (2001) -
Evolving symbolic density functionals
por: Ma, He, et al.
Publicado: (2022) -
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
por: Yuan, Kai, et al.
Publicado: (2015) -
Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia
por: Furman, Tamar, et al.
Publicado: (2012)