Cargando…
Effects of the New Dual PPARα/δ Agonist GFT505 on Lipid and Glucose Homeostasis in Abdominally Obese Patients With Combined Dyslipidemia or Impaired Glucose Metabolism
OBJECTIVE: We evaluated the metabolic effects and tolerability of GFT505, a novel dual peroxisome proliferator–activated receptor α/δ agonist, in abdominally obese patients with either combined dyslipidemia or prediabetes. RESEARCH DESIGN AND METHODS: The S1 study was conducted in 94 patients with c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161281/ https://www.ncbi.nlm.nih.gov/pubmed/21816979 http://dx.doi.org/10.2337/dc11-0093 |
Sumario: | OBJECTIVE: We evaluated the metabolic effects and tolerability of GFT505, a novel dual peroxisome proliferator–activated receptor α/δ agonist, in abdominally obese patients with either combined dyslipidemia or prediabetes. RESEARCH DESIGN AND METHODS: The S1 study was conducted in 94 patients with combined dyslipidemia while the S2 study was conducted in 47 patients with prediabetes. Participants were randomly assigned in a double-blind manner to GFT505 at 80 mg/day or placebo for 28 (S1) or 35 (S2) days. Primary efficacy end points were changes from baseline at week 4 in both fasting plasma triglycerides and HDL cholesterol in the S1 group and 2-h glucose upon oral glucose tolerance test in the S2 group. RESULTS: In comparison with placebo, GFT505 significantly reduced fasting plasma triglycerides (S1: least squares means −16.7% [95% one-sided CI −∞ to −5.3], P = 0.005; S2: −24.8% [−∞ to −10.5], P = 0.0003) and increased HDL cholesterol (S1: 7.8% [3.0 to ∞], P = 0.004; S2: 9.3% [1.7 to ∞], P = 0.009) in both studies, whereas LDL cholesterol only decreased in S2 (−11.0% [ −∞ to −3.5], P = 0.002). In S2, GFT505 did not reduce 2-h glucose (−0.52 mmol/L [−∞ to 0.61], P = 0.18) but led to a significant decrease of homeostasis model assessment of insulin resistance (−31.4% [−∞ to 12.5], P = 0.001), fasting plasma glucose (−0.37 mmol/L [−∞ to −0.10], P = 0.01) and fructosamine (−3.6% [−∞ to −0.20], P = 0.02). GFT505 also reduced γ glutamyl transferase levels in both studies (S1: −19.9% [−∞ to −12.8], P < 0.0001; S2: −15.1% [−∞ to −1.1], P = 0.004). No specific adverse safety signals were reported during the studies. CONCLUSIONS: GFT505 may be considered a new drug candidate for the treatment of lipid and glucose disorders associated with the metabolic syndrome. |
---|