Cargando…

Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts

Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...

Descripción completa

Detalles Bibliográficos
Autores principales: Roque, Francisco S., Jensen, Peter B., Schmock, Henriette, Dalgaard, Marlene, Andreatta, Massimo, Hansen, Thomas, Søeby, Karen, Bredkjær, Søren, Juul, Anders, Werge, Thomas, Jensen, Lars J., Brunak, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161904/
https://www.ncbi.nlm.nih.gov/pubmed/21901084
http://dx.doi.org/10.1371/journal.pcbi.1002141
_version_ 1782210753853390848
author Roque, Francisco S.
Jensen, Peter B.
Schmock, Henriette
Dalgaard, Marlene
Andreatta, Massimo
Hansen, Thomas
Søeby, Karen
Bredkjær, Søren
Juul, Anders
Werge, Thomas
Jensen, Lars J.
Brunak, Søren
author_facet Roque, Francisco S.
Jensen, Peter B.
Schmock, Henriette
Dalgaard, Marlene
Andreatta, Massimo
Hansen, Thomas
Søeby, Karen
Bredkjær, Søren
Juul, Anders
Werge, Thomas
Jensen, Lars J.
Brunak, Søren
author_sort Roque, Francisco S.
collection PubMed
description Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.
format Online
Article
Text
id pubmed-3161904
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31619042011-09-07 Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts Roque, Francisco S. Jensen, Peter B. Schmock, Henriette Dalgaard, Marlene Andreatta, Massimo Hansen, Thomas Søeby, Karen Bredkjær, Søren Juul, Anders Werge, Thomas Jensen, Lars J. Brunak, Søren PLoS Comput Biol Research Article Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks. Public Library of Science 2011-08-25 /pmc/articles/PMC3161904/ /pubmed/21901084 http://dx.doi.org/10.1371/journal.pcbi.1002141 Text en Roque et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Roque, Francisco S.
Jensen, Peter B.
Schmock, Henriette
Dalgaard, Marlene
Andreatta, Massimo
Hansen, Thomas
Søeby, Karen
Bredkjær, Søren
Juul, Anders
Werge, Thomas
Jensen, Lars J.
Brunak, Søren
Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title_full Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title_fullStr Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title_full_unstemmed Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title_short Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts
title_sort using electronic patient records to discover disease correlations and stratify patient cohorts
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161904/
https://www.ncbi.nlm.nih.gov/pubmed/21901084
http://dx.doi.org/10.1371/journal.pcbi.1002141
work_keys_str_mv AT roquefranciscos usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT jensenpeterb usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT schmockhenriette usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT dalgaardmarlene usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT andreattamassimo usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT hansenthomas usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT søebykaren usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT bredkjærsøren usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT juulanders usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT wergethomas usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT jensenlarsj usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT brunaksøren usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts