Cargando…
Graphical Approach to Model Reduction for Nonlinear Biochemical Networks
Model reduction is a central challenge to the development and analysis of multiscale physiology models. Advances in model reduction are needed not only for computational feasibility but also for obtaining conceptual insights from complex systems. Here, we introduce an intuitive graphical approach to...
Autores principales: | Holland, David O., Krainak, Nicholas C., Saucerman, Jeffrey J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162006/ https://www.ncbi.nlm.nih.gov/pubmed/21901136 http://dx.doi.org/10.1371/journal.pone.0023795 |
Ejemplares similares
-
Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model
por: Kraeutler, Matthew J, et al.
Publicado: (2010) -
Nonlinear optical components for all-optical probabilistic graphical model
por: Babaeian, Masoud, et al.
Publicado: (2018) -
Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks
por: Sun, Xiaodian, et al.
Publicado: (2008) -
A model reduction method for biochemical reaction networks
por: Rao, Shodhan, et al.
Publicado: (2014) -
Predictive model identifies key network regulators of cardiomyocyte mechano-signaling
por: Tan, Philip M., et al.
Publicado: (2017)