Cargando…
Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review
With the dissemination of optical coherence tomography over the past two decades, the role of persistent vitreomacular adhesion (VMA) in the development of numerous macular pathologies – including idiopathic macular hole, vitreomacular traction syndrome, cystoid and diabetic macular edema, neovascul...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162296/ https://www.ncbi.nlm.nih.gov/pubmed/21887098 http://dx.doi.org/10.2147/OPTH.S14840 |
Sumario: | With the dissemination of optical coherence tomography over the past two decades, the role of persistent vitreomacular adhesion (VMA) in the development of numerous macular pathologies – including idiopathic macular hole, vitreomacular traction syndrome, cystoid and diabetic macular edema, neovascularization in diabetic retinopathy and retinal vein occlusion, exudative age-related macular degeneration, and myopic traction maculopathy – has been established. While invasive vitreoretinal procedures have long been utilized to address complications related to these disorders, such an approach is hampered by incomplete vitreoretinal separation and vitreous removal, surgical complications, and high costs. In light of such limitations, investigators have increasingly looked to nonsurgical means for the treatment of persistent pathologic VMA. Chief among these alternative measures is the intravitreal application of pharmacologic agents for the induction of vitreous liquefaction and/or vitreoretinal separation, an approach termed pharmacologic vitreolysis. This article aims to review the available evidence regarding the use of pharmacologic agents in the treatment of VMA-related pathology. In addition, a discussion of vitreous molecular organization and principles of physiologic posterior vitreous detachment is provided to allow for a consideration of vitreolytic agent mode of action and molecular targets. |
---|