Cargando…
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple...
Autores principales: | Shang, Yue, Li, Yanpeng, Lin, Hongfei, Yang, Zhihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162578/ https://www.ncbi.nlm.nih.gov/pubmed/21887336 http://dx.doi.org/10.1371/journal.pone.0023862 |
Ejemplares similares
-
Exploiting sequence labeling framework to extract document-level relations from biomedical texts
por: Li, Zhiheng, et al.
Publicado: (2020) -
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
Extraction of semantic biomedical relations from text using conditional random fields
por: Bundschus, Markus, et al.
Publicado: (2008) -
Disease Related Knowledge Summarization Based on Deep Graph Search
por: Wu, Xiaofang, et al.
Publicado: (2015) -
A coherent graph-based semantic clustering and summarization approach for biomedical literature and a new summarization evaluation method
por: Yoo, Illhoi, et al.
Publicado: (2007)