Cargando…
Molecular evolution of cyclin proteins in animals and fungi
BACKGROUND: The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162929/ https://www.ncbi.nlm.nih.gov/pubmed/21798004 http://dx.doi.org/10.1186/1471-2148-11-224 |
_version_ | 1782210902071705600 |
---|---|
author | Gunbin, Konstantin V Suslov, Valentin V Turnaev, Igor I Afonnikov, Dmitry A Kolchanov, Nikolay A |
author_facet | Gunbin, Konstantin V Suslov, Valentin V Turnaev, Igor I Afonnikov, Dmitry A Kolchanov, Nikolay A |
author_sort | Gunbin, Konstantin V |
collection | PubMed |
description | BACKGROUND: The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. RESULTS: We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. CONCLUSIONS: The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. |
format | Online Article Text |
id | pubmed-3162929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31629292011-08-28 Molecular evolution of cyclin proteins in animals and fungi Gunbin, Konstantin V Suslov, Valentin V Turnaev, Igor I Afonnikov, Dmitry A Kolchanov, Nikolay A BMC Evol Biol Research Article BACKGROUND: The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. RESULTS: We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. CONCLUSIONS: The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. BioMed Central 2011-07-28 /pmc/articles/PMC3162929/ /pubmed/21798004 http://dx.doi.org/10.1186/1471-2148-11-224 Text en Copyright ©2011 Gunbin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gunbin, Konstantin V Suslov, Valentin V Turnaev, Igor I Afonnikov, Dmitry A Kolchanov, Nikolay A Molecular evolution of cyclin proteins in animals and fungi |
title | Molecular evolution of cyclin proteins in animals and fungi |
title_full | Molecular evolution of cyclin proteins in animals and fungi |
title_fullStr | Molecular evolution of cyclin proteins in animals and fungi |
title_full_unstemmed | Molecular evolution of cyclin proteins in animals and fungi |
title_short | Molecular evolution of cyclin proteins in animals and fungi |
title_sort | molecular evolution of cyclin proteins in animals and fungi |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162929/ https://www.ncbi.nlm.nih.gov/pubmed/21798004 http://dx.doi.org/10.1186/1471-2148-11-224 |
work_keys_str_mv | AT gunbinkonstantinv molecularevolutionofcyclinproteinsinanimalsandfungi AT suslovvalentinv molecularevolutionofcyclinproteinsinanimalsandfungi AT turnaevigori molecularevolutionofcyclinproteinsinanimalsandfungi AT afonnikovdmitrya molecularevolutionofcyclinproteinsinanimalsandfungi AT kolchanovnikolaya molecularevolutionofcyclinproteinsinanimalsandfungi |