Cargando…

Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

BACKGROUND: Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many...

Descripción completa

Detalles Bibliográficos
Autores principales: Bita, Craita E, Zenoni, Sara, Vriezen, Wim H, Mariani, Celestina, Pezzotti, Mario, Gerats, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162933/
https://www.ncbi.nlm.nih.gov/pubmed/21801454
http://dx.doi.org/10.1186/1471-2164-12-384
_version_ 1782210902949363712
author Bita, Craita E
Zenoni, Sara
Vriezen, Wim H
Mariani, Celestina
Pezzotti, Mario
Gerats, Tom
author_facet Bita, Craita E
Zenoni, Sara
Vriezen, Wim H
Mariani, Celestina
Pezzotti, Mario
Gerats, Tom
author_sort Bita, Craita E
collection PubMed
description BACKGROUND: Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C) in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. RESULTS: The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS) alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. CONCLUSION: In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In the heat-tolerant genotype, the majority of changes in gene expression is represented by up-regulation, while in the heat-sensitive genotype there is a general trend to down-regulate gene expression upon MHS. The putative functions associated with the genes identified by cDNA-AFLP or microarray indicate the involvement of heat shock, metabolism, antioxidant and development pathways. Based on the observed differences in response to MHS and on literature sources, we identified a number of candidate transcripts involved in heat-tolerance.
format Online
Article
Text
id pubmed-3162933
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31629332011-08-28 Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants Bita, Craita E Zenoni, Sara Vriezen, Wim H Mariani, Celestina Pezzotti, Mario Gerats, Tom BMC Genomics Research Article BACKGROUND: Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C) in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. RESULTS: The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS) alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. CONCLUSION: In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In the heat-tolerant genotype, the majority of changes in gene expression is represented by up-regulation, while in the heat-sensitive genotype there is a general trend to down-regulate gene expression upon MHS. The putative functions associated with the genes identified by cDNA-AFLP or microarray indicate the involvement of heat shock, metabolism, antioxidant and development pathways. Based on the observed differences in response to MHS and on literature sources, we identified a number of candidate transcripts involved in heat-tolerance. BioMed Central 2011-07-31 /pmc/articles/PMC3162933/ /pubmed/21801454 http://dx.doi.org/10.1186/1471-2164-12-384 Text en Copyright ©2011 Bita et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bita, Craita E
Zenoni, Sara
Vriezen, Wim H
Mariani, Celestina
Pezzotti, Mario
Gerats, Tom
Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title_full Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title_fullStr Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title_full_unstemmed Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title_short Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
title_sort temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162933/
https://www.ncbi.nlm.nih.gov/pubmed/21801454
http://dx.doi.org/10.1186/1471-2164-12-384
work_keys_str_mv AT bitacraitae temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants
AT zenonisara temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants
AT vriezenwimh temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants
AT marianicelestina temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants
AT pezzottimario temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants
AT geratstom temperaturestressdifferentiallymodulatestranscriptioninmeioticanthersofheattolerantandheatsensitivetomatoplants