Cargando…

Experimental and Modeling Study of Collagen Scaffolds with the Effects of Crosslinking and Fiber Alignment

Collagen type I scaffolds are commonly used due to its abundance, biocompatibility, and ubiquity. Most applications require the scaffolds to operate under mechanical stresses. Therefore understanding and being able to control the structural-functional integrity of collagen scaffolds becomes crucial....

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Bin, Chow, Ming-Jay, Zhang, Yanhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162969/
https://www.ncbi.nlm.nih.gov/pubmed/21876695
http://dx.doi.org/10.1155/2011/172389
Descripción
Sumario:Collagen type I scaffolds are commonly used due to its abundance, biocompatibility, and ubiquity. Most applications require the scaffolds to operate under mechanical stresses. Therefore understanding and being able to control the structural-functional integrity of collagen scaffolds becomes crucial. Using a combined experimental and modeling approach, we studied the structure and function of Type I collagen gel with the effects of spatial fiber alignment and crosslinking. Aligned collagen scaffolds were created through the flow of magnetic particles enmeshed in collagen fibrils to mimic the anisotropy seen in native tissue. Inter- and intra- molecular crosslinking was modified chemically with Genipin to further improve the stiffness of collagen scaffolds. The anisotropic mechanical properties of collagen scaffolds were characterized using a planar biaxial tensile tester and parallel plate rheometer. The tangent stiffness from biaxial tensile test is two to three orders of magnitude higher than the storage moduli from rheological measurements. The biphasic nature of collagen gel was discussed and used to explain the mechanical behavior of collagen scaffolds under different types of mechanical tests. An anisotropic hyperelastic constitutive model was used to capture the characteristics of the stress-strain behavior exhibited by collagen scaffolds.