Cargando…
Predicting disease risks from highly imbalanced data using random forest
BACKGROUND: We present a method utilizing Healthcare Cost and Utilization Project (HCUP) dataset for predicting disease risk of individuals based on their medical diagnosis history. The presented methodology may be incorporated in a variety of applications such as risk management, tailored health co...
Autores principales: | Khalilia, Mohammed, Chakraborty, Sounak, Popescu, Mihail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163175/ https://www.ncbi.nlm.nih.gov/pubmed/21801360 http://dx.doi.org/10.1186/1472-6947-11-51 |
Ejemplares similares
-
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
Embedding Undersampling Rotation Forest for Imbalanced Problem
por: Guo, Huaping, et al.
Publicado: (2018) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Predicting defects in imbalanced data using resampling methods: an empirical investigation
por: Malhotra, Ruchika, et al.
Publicado: (2022) -
Classification of imbalanced oral cancer image data from high-risk population
por: Song, Bofan, et al.
Publicado: (2021)