Cargando…
Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls
We recorded via telemetry the arterial blood pressure (BP) and heart rate (HR) response to classical conditioning following the spontaneous onset of autoimmune diabetes in BBDP/Wor rats vs. age-matched, diabetes-resistant control (BBDR/Wor) rats. Our purpose was to evaluate the autonomic regulatory...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163305/ https://www.ncbi.nlm.nih.gov/pubmed/21904530 http://dx.doi.org/10.3389/fphys.2011.00053 |
_version_ | 1782210937252478976 |
---|---|
author | Randall, David C. Speakman, Richard O. Silcox, Dennis L. Brown, Laura V. Brown, David R. Gong, Ming C. Patwardhan, Abhijit Reynolds, L. Raymond Karounos, Dennis G. Burgess, Don E. Anigbogu, Chikodi N. |
author_facet | Randall, David C. Speakman, Richard O. Silcox, Dennis L. Brown, Laura V. Brown, David R. Gong, Ming C. Patwardhan, Abhijit Reynolds, L. Raymond Karounos, Dennis G. Burgess, Don E. Anigbogu, Chikodi N. |
author_sort | Randall, David C. |
collection | PubMed |
description | We recorded via telemetry the arterial blood pressure (BP) and heart rate (HR) response to classical conditioning following the spontaneous onset of autoimmune diabetes in BBDP/Wor rats vs. age-matched, diabetes-resistant control (BBDR/Wor) rats. Our purpose was to evaluate the autonomic regulatory responses to an acute stress in a diabetic state of up to 12 months duration. The stress was a 15-s pulsed tone (CS+) followed by a 0.5-s tail shock. The initial, transient increase in BP (i.e., the “first component,” or C(1)), known to be derived from an orienting response and produced by a sympathetic increase in peripheral resistance, was similar in diabetic and control rats through ∼9 months of diabetes; it was smaller in diabetic rats 10 months after diabetes onset. Weakening of the C(1) BP increase in rats that were diabetic for >10 months is consistent with the effects of sympathetic neuropathy. A longer-latency, smaller, but sustained “second component” (C(2)) conditional increase in BP, that is acquired as a rat learns the association between CS+ and the shock, and which results from an increase in cardiac output, was smaller in the diabetic vs. control rats starting from the first month of diabetes. A concomitant HR slowing was also smaller in diabetic rats. The difference in the C(2) BP increase, as observed already during the first month of diabetes, is probably secondary to the effects of hyperglycemia upon myocardial metabolism and contractile function, but it may also result from effects on cognition. The small HR slowing concomitant with the C(2) pressor event is probably secondary to differences in baroreflex activation or function, though parasympathetic dysfunction may contribute later in the duration of diabetes. The nearly immediate deficit after disease onset in the C(2) response indicates that diabetes alters BP and HR responses to external challenges prior to the development of structural changes in the vasculature or autonomic nerves. |
format | Online Article Text |
id | pubmed-3163305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31633052011-09-08 Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls Randall, David C. Speakman, Richard O. Silcox, Dennis L. Brown, Laura V. Brown, David R. Gong, Ming C. Patwardhan, Abhijit Reynolds, L. Raymond Karounos, Dennis G. Burgess, Don E. Anigbogu, Chikodi N. Front Physiol Physiology We recorded via telemetry the arterial blood pressure (BP) and heart rate (HR) response to classical conditioning following the spontaneous onset of autoimmune diabetes in BBDP/Wor rats vs. age-matched, diabetes-resistant control (BBDR/Wor) rats. Our purpose was to evaluate the autonomic regulatory responses to an acute stress in a diabetic state of up to 12 months duration. The stress was a 15-s pulsed tone (CS+) followed by a 0.5-s tail shock. The initial, transient increase in BP (i.e., the “first component,” or C(1)), known to be derived from an orienting response and produced by a sympathetic increase in peripheral resistance, was similar in diabetic and control rats through ∼9 months of diabetes; it was smaller in diabetic rats 10 months after diabetes onset. Weakening of the C(1) BP increase in rats that were diabetic for >10 months is consistent with the effects of sympathetic neuropathy. A longer-latency, smaller, but sustained “second component” (C(2)) conditional increase in BP, that is acquired as a rat learns the association between CS+ and the shock, and which results from an increase in cardiac output, was smaller in the diabetic vs. control rats starting from the first month of diabetes. A concomitant HR slowing was also smaller in diabetic rats. The difference in the C(2) BP increase, as observed already during the first month of diabetes, is probably secondary to the effects of hyperglycemia upon myocardial metabolism and contractile function, but it may also result from effects on cognition. The small HR slowing concomitant with the C(2) pressor event is probably secondary to differences in baroreflex activation or function, though parasympathetic dysfunction may contribute later in the duration of diabetes. The nearly immediate deficit after disease onset in the C(2) response indicates that diabetes alters BP and HR responses to external challenges prior to the development of structural changes in the vasculature or autonomic nerves. Frontiers Research Foundation 2011-08-29 /pmc/articles/PMC3163305/ /pubmed/21904530 http://dx.doi.org/10.3389/fphys.2011.00053 Text en Copyright © 2011 Randall, Speakman, Silcox, Brown, Brown, Gong, Patwardhan, Reynolds, Karounos, Burgess and Anigbogu. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with. |
spellingShingle | Physiology Randall, David C. Speakman, Richard O. Silcox, Dennis L. Brown, Laura V. Brown, David R. Gong, Ming C. Patwardhan, Abhijit Reynolds, L. Raymond Karounos, Dennis G. Burgess, Don E. Anigbogu, Chikodi N. Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title | Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title_full | Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title_fullStr | Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title_full_unstemmed | Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title_short | Longitudinal Analysis of Arterial Blood Pressure and Heart Rate Response to Acute Behavioral Stress in Rats with Type 1 Diabetes Mellitus and in Age-Matched Controls |
title_sort | longitudinal analysis of arterial blood pressure and heart rate response to acute behavioral stress in rats with type 1 diabetes mellitus and in age-matched controls |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163305/ https://www.ncbi.nlm.nih.gov/pubmed/21904530 http://dx.doi.org/10.3389/fphys.2011.00053 |
work_keys_str_mv | AT randalldavidc longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT speakmanrichardo longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT silcoxdennisl longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT brownlaurav longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT browndavidr longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT gongmingc longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT patwardhanabhijit longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT reynoldslraymond longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT karounosdennisg longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT burgessdone longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols AT anigboguchikodin longitudinalanalysisofarterialbloodpressureandheartrateresponsetoacutebehavioralstressinratswithtype1diabetesmellitusandinagematchedcontrols |