Cargando…

Adaptive thresholds to detect differentially expressed genes in microarray data

To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting trul...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukuoka, Yutaka, Inaoka, Hidenori, Noshiro, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163930/
https://www.ncbi.nlm.nih.gov/pubmed/21904436
Descripción
Sumario:To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive threshold method (AT). The adaptive thresholds, which have different values for different expression levels, are calculated based on two measurements under the same condition. The sensitivity, specificity and false discovery rate (FDR) of AT were investigated by simulations. The sensitivity and specificity under various noise conditions were greater than 89.7% and 99.32%, respectively. The FDR was smaller than 0.27. These results demonstrated the reliability of the method.