Cargando…
Adaptive thresholds to detect differentially expressed genes in microarray data
To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting trul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163930/ https://www.ncbi.nlm.nih.gov/pubmed/21904436 |
Sumario: | To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive threshold method (AT). The adaptive thresholds, which have different values for different expression levels, are calculated based on two measurements under the same condition. The sensitivity, specificity and false discovery rate (FDR) of AT were investigated by simulations. The sensitivity and specificity under various noise conditions were greater than 89.7% and 99.32%, respectively. The FDR was smaller than 0.27. These results demonstrated the reliability of the method. |
---|