Cargando…
A photoswitchable orange-to-far-red fluorescent protein, PSmOrange
We report a monomeric PSmOrange protein that is initially orange (excitation and emission at 548 and 565 nm) but becomes far-red (excitation and emission at 636 and 662 nm) after irradiation with blue-green light. Compared to its parental orange proteins, PSmOrange has greater brightness, faster mat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164916/ https://www.ncbi.nlm.nih.gov/pubmed/21804536 http://dx.doi.org/10.1038/nmeth.1664 |
Sumario: | We report a monomeric PSmOrange protein that is initially orange (excitation and emission at 548 and 565 nm) but becomes far-red (excitation and emission at 636 and 662 nm) after irradiation with blue-green light. Compared to its parental orange proteins, PSmOrange has greater brightness, faster maturation, higher photoconversion contrast, and better photostability. The red-shifted spectra of both forms of PSmOrange enable its simultaneous use with cyan-to-green photoswitchable proteins to study four intracellular populations. Photoconverted PSmOrange has, to date, the most far-red excitation peak, provides diffraction-limited and super-resolution imaging in far-red range, is optimally excited with common red lasers, and can be photoconverted subcutaneously in a mouse. PSmOrange photoswitching occurs via a two-step photo-oxidation process, which causes cleavage of the polypeptide backbone. The far-red fluorescence of photoconverted PSmOrange results from a novel chromophore containing N-acylimine with a coplanar carbon-oxygen double bond. |
---|