Cargando…
Learning an enriched representation from unlabeled data for protein-protein interaction extraction
BACKGROUND: Extracting protein-protein interactions from biomedical literature is an important task in biomedical text mining. Supervised machine learning methods have been used with great success in this task but they tend to suffer from data sparseness because of their restriction to obtain knowle...
Autores principales: | Li, Yanpeng, Hu, Xiaohua, Lin, Hongfei, Yang, Zhihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166043/ https://www.ncbi.nlm.nih.gov/pubmed/20406505 http://dx.doi.org/10.1186/1471-2105-11-S2-S7 |
Ejemplares similares
-
Exploiting likely-positive and unlabeled data to improve the identification of protein-protein interaction articles
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2008) -
Integrating experimental and literature protein-protein interaction data for protein
complex prediction
por: Zhang, Yijia, et al.
Publicado: (2015) -
Efficient use of unlabeled data for protein sequence classification: a comparative study
por: Kuksa, Pavel, et al.
Publicado: (2009) -
Ontology integration to identify protein complex in protein interaction networks
por: Xu, Bo, et al.
Publicado: (2011) -
Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks
por: Wang, Jian, et al.
Publicado: (2012)