Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach
Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166320/ https://www.ncbi.nlm.nih.gov/pubmed/21912686 http://dx.doi.org/10.1371/journal.pone.0024306 |
_version_ | 1782211150882013184 |
---|---|
author | Zhao, Jing Yang, Ting-Hong Huang, Yongxu Holme, Petter |
author_facet | Zhao, Jing Yang, Ting-Hong Huang, Yongxu Holme, Petter |
author_sort | Zhao, Jing |
collection | PubMed |
description | Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions—that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders. |
format | Online Article Text |
id | pubmed-3166320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31663202011-09-12 Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach Zhao, Jing Yang, Ting-Hong Huang, Yongxu Holme, Petter PLoS One Research Article Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions—that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders. Public Library of Science 2011-09-02 /pmc/articles/PMC3166320/ /pubmed/21912686 http://dx.doi.org/10.1371/journal.pone.0024306 Text en Zhao et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhao, Jing Yang, Ting-Hong Huang, Yongxu Holme, Petter Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title | Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title_full | Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title_fullStr | Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title_full_unstemmed | Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title_short | Ranking Candidate Disease Genes from Gene Expression and Protein Interaction: A Katz-Centrality Based Approach |
title_sort | ranking candidate disease genes from gene expression and protein interaction: a katz-centrality based approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166320/ https://www.ncbi.nlm.nih.gov/pubmed/21912686 http://dx.doi.org/10.1371/journal.pone.0024306 |
work_keys_str_mv | AT zhaojing rankingcandidatediseasegenesfromgeneexpressionandproteininteractionakatzcentralitybasedapproach AT yangtinghong rankingcandidatediseasegenesfromgeneexpressionandproteininteractionakatzcentralitybasedapproach AT huangyongxu rankingcandidatediseasegenesfromgeneexpressionandproteininteractionakatzcentralitybasedapproach AT holmepetter rankingcandidatediseasegenesfromgeneexpressionandproteininteractionakatzcentralitybasedapproach |