Cargando…
Accelerometry-Based Classification of Human Activities Using Markov Modeling
Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Au...
Autores principales: | Mannini, Andrea, Sabatini, Angelo Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166724/ https://www.ncbi.nlm.nih.gov/pubmed/21904542 http://dx.doi.org/10.1155/2011/647858 |
Ejemplares similares
-
Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers
por: Mannini, Andrea, et al.
Publicado: (2010) -
A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients
por: Mannini, Andrea, et al.
Publicado: (2016) -
Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors
por: Sabatini, Angelo Maria, et al.
Publicado: (2015) -
Classification of occupational activity categories using accelerometry: NHANES 2003–2004
por: Steeves, Jeremy A., et al.
Publicado: (2015) -
Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements
por: Sabatini, Angelo Maria, et al.
Publicado: (2016)