Cargando…

Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus

The aim of this study was to examine rat thymus innervation using denervation techniques and to explore the related microanatomical localization of dopamine, D1, D2 receptors and dopamine membrane transporter (DAT). In the thymus subcapsular region, the parenchymal cholinergic fibers belong exclusiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Mignini, F., Sabbatini, M., D'Andrea, V., Cavallotti, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167301/
https://www.ncbi.nlm.nih.gov/pubmed/20558339
http://dx.doi.org/10.4081/ejh.2010.e17
Descripción
Sumario:The aim of this study was to examine rat thymus innervation using denervation techniques and to explore the related microanatomical localization of dopamine, D1, D2 receptors and dopamine membrane transporter (DAT). In the thymus subcapsular region, the parenchymal cholinergic fibers belong exclusively to phrenic nerve branching. No somatic phrenic nerve branching was detected in any other analysed thymus lobule regions. In rats subjected to sympathetic or parasympathetic ablation, it was observed that catecholaminergic and cholinergic nerve fibers respectively contributed to forming plexuses along vessel walls. In the subcapsular and septal region, no parenchymal nerve branching, belonging to sympathetic or parasympathetic nervous system was noted. Instead, in the deep cortical region, cortico-medullary junction (CM-j) and medulla, catecholaminergic and cholinergic nerve fibers were detected along the vessels and parenchyma. Dopamine and dopamine receptors were widely diffused in the lobular cortico-medullary junction region and in the medulla, where the final steps of thymocyte maturation and their trafficking take place. No variation in dopamine and DAT immune reaction was observed following total or partial parasympathectomy or phrenic nerve cutting. After chemical or surgical sympathectomy however, neither dopamine nor DAT immune reaction was noted again. Instead, D1 and D2 dopamine receptor expression was not affected by thymus denervation. In rats subjected to specific denervation, it was observed the direct intraparenchymal branching of the phrenic nerve and sympathetic and parasympathetic fibers into thymus parenchyma along vessels. These findings on the dopaminergic system highlight the importance of neurotransmitter receptor expression in the homeostasis of neuroimmune modulation.