Cargando…

Maturation of neurotransmission in the developing rat cochlea: immunohistochemical evidence from differential expression of synaptophysin and synaptobrevin 2

Synaptophysin and synaptobrevin 2 associate closely with packaging and storage of synaptic vesicles and transmitter release, and both play important roles in the development of rat cochlea. We examined the differential expression of synaptophysin and synaptobrevin 2 in the developing Sprague-Dawley...

Descripción completa

Detalles Bibliográficos
Autores principales: He, S., Yang, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167347/
https://www.ncbi.nlm.nih.gov/pubmed/21556117
http://dx.doi.org/10.4081/ejh.2011.e2
Descripción
Sumario:Synaptophysin and synaptobrevin 2 associate closely with packaging and storage of synaptic vesicles and transmitter release, and both play important roles in the development of rat cochlea. We examined the differential expression of synaptophysin and synaptobrevin 2 in the developing Sprague-Dawley rat cochlea, and investigated the relationship between their expression and auditory development. The expression of synaptophysin and synaptobrevin 2 was not observed in Kolliker's and Corti's organ at postnatal 1 day (P1) and P5, and the top turn of the cochlea at P10. Expression was detected in the outer spiral bundle (OSB), the inner spiral bundle (ISB), and the medial wall of the Deiters' cell of the cochlea at P14, and P28, and in the middle or the basal turn of Corti's organ at P10. Synaptobrevin 2 was expressed in the top of the inner hair cells (IHCs) in Corti's organ of both P14 and P28 rats. All spiral ganglion neurons (SGNs) were stained at all ages examined. The localization of synaptophysin and synaptobrevin 2 in the cochlea was closely associated with the distribution of nerve fibers and neural activity (the docking and release of synaptic vesicles). Synaptophysin and synaptobrevin 2 were expressed in a dynamic manner during the development of rat cochlea. Their expression differences during the development were in favor of the configuration course constructed between nerve endings and target cells. It also played a key role in the formation of the correct coding of auditory information during auditory system development.