Cargando…

Effective connectivity: Influence, causality and biophysical modeling

This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically...

Descripción completa

Detalles Bibliográficos
Autores principales: Valdes-Sosa, Pedro A., Roebroeck, Alard, Daunizeau, Jean, Friston, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167373/
https://www.ncbi.nlm.nih.gov/pubmed/21477655
http://dx.doi.org/10.1016/j.neuroimage.2011.03.058
Descripción
Sumario:This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments.