Cargando…
Effective connectivity: Influence, causality and biophysical modeling
This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically...
Autores principales: | Valdes-Sosa, Pedro A., Roebroeck, Alard, Daunizeau, Jean, Friston, Karl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167373/ https://www.ncbi.nlm.nih.gov/pubmed/21477655 http://dx.doi.org/10.1016/j.neuroimage.2011.03.058 |
Ejemplares similares
-
Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
por: Friston, Karl
Publicado: (2011) -
Reaffirming and Clarifying the American Society of Clinical Oncology’s Policy Statement on the Critical Role of Phase I Trials in Cancer Research and Treatment
por: Weber, Jeffrey S., et al.
Publicado: (2017) -
Using Implementation Science to Examine the Impact of Cancer Survivorship Care Plans
por: Selove, Rebecca, et al.
Publicado: (2016) -
Reporting of Racial Health Disparities Research: Are We Making Progress?
por: Vince, Randy A., et al.
Publicado: (2022) -
Guidelines for reporting an fMRI study
por: Poldrack, Russell A., et al.
Publicado: (2008)