Cargando…
Direct and indirect effects in the regulation of overlapping promoters
Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167631/ https://www.ncbi.nlm.nih.gov/pubmed/21609952 http://dx.doi.org/10.1093/nar/gkr390 |
_version_ | 1782211267964960768 |
---|---|
author | Bendtsen, Kristian Moss Erdőssy, János Csiszovszki, Zsolt Svenningsen, Sine Lo Sneppen, Kim Krishna, Sandeep Semsey, Szabolcs |
author_facet | Bendtsen, Kristian Moss Erdőssy, János Csiszovszki, Zsolt Svenningsen, Sine Lo Sneppen, Kim Krishna, Sandeep Semsey, Szabolcs |
author_sort | Bendtsen, Kristian Moss |
collection | PubMed |
description | Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli promoter database we found that ∼14% of the identified ‘forward’ promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used for both activation and repression of promoter transcription, depending on the context. These findings can be exploited in the construction of synthetic networks. |
format | Online Article Text |
id | pubmed-3167631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31676312011-09-06 Direct and indirect effects in the regulation of overlapping promoters Bendtsen, Kristian Moss Erdőssy, János Csiszovszki, Zsolt Svenningsen, Sine Lo Sneppen, Kim Krishna, Sandeep Semsey, Szabolcs Nucleic Acids Res Computational Biology Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli promoter database we found that ∼14% of the identified ‘forward’ promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used for both activation and repression of promoter transcription, depending on the context. These findings can be exploited in the construction of synthetic networks. Oxford University Press 2011-09 2011-05-23 /pmc/articles/PMC3167631/ /pubmed/21609952 http://dx.doi.org/10.1093/nar/gkr390 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Computational Biology Bendtsen, Kristian Moss Erdőssy, János Csiszovszki, Zsolt Svenningsen, Sine Lo Sneppen, Kim Krishna, Sandeep Semsey, Szabolcs Direct and indirect effects in the regulation of overlapping promoters |
title | Direct and indirect effects in the regulation of overlapping promoters |
title_full | Direct and indirect effects in the regulation of overlapping promoters |
title_fullStr | Direct and indirect effects in the regulation of overlapping promoters |
title_full_unstemmed | Direct and indirect effects in the regulation of overlapping promoters |
title_short | Direct and indirect effects in the regulation of overlapping promoters |
title_sort | direct and indirect effects in the regulation of overlapping promoters |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167631/ https://www.ncbi.nlm.nih.gov/pubmed/21609952 http://dx.doi.org/10.1093/nar/gkr390 |
work_keys_str_mv | AT bendtsenkristianmoss directandindirecteffectsintheregulationofoverlappingpromoters AT erdossyjanos directandindirecteffectsintheregulationofoverlappingpromoters AT csiszovszkizsolt directandindirecteffectsintheregulationofoverlappingpromoters AT svenningsensinelo directandindirecteffectsintheregulationofoverlappingpromoters AT sneppenkim directandindirecteffectsintheregulationofoverlappingpromoters AT krishnasandeep directandindirecteffectsintheregulationofoverlappingpromoters AT semseyszabolcs directandindirecteffectsintheregulationofoverlappingpromoters |