Cargando…

Risks associated with melamine and related triazine contamination of food

Recent adulteration of milk products with melamine (ME) in several countries caused adverse health effects and even deaths in infants. Earlier, in 2007, contamination of pet food with ME and its related contaminants was associated with many clinical cases of canine and feline nephrotoxicity, and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Baynes, RE, Riviere, JE
Formato: Online Artículo Texto
Lenguaje:English
Publicado: CoAction Publishing 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167660/
https://www.ncbi.nlm.nih.gov/pubmed/22460395
http://dx.doi.org/10.3134/ehtj.10.005
Descripción
Sumario:Recent adulteration of milk products with melamine (ME) in several countries caused adverse health effects and even deaths in infants. Earlier, in 2007, contamination of pet food with ME and its related contaminants was associated with many clinical cases of canine and feline nephrotoxicity, and in some cases mortality. ME is a triazine compound that is often detected with other triazine analogs such as cyanuric acid. As is the custom in some livestock operations, the contaminated pet food was mixed with feed intended for the swine and poultry industry. This practice has raised several questions as to whether ME and its related triazines would adversely affect the health of these food animals, and whether meat products derived from swine and poultry could contain high-enough levels of these contaminants to warrant public health concern. Data for this review article were obtained from recent research efforts in our laboratory, peer-reviewed publications cited in PubMed, and information available at USDA, US FDA, and WHO websites. The primary issues discussed are related to (1) the chemistry and interactions between ME and its triazine analogs; (2) reported animal and human exposures with possible pathways through which ME can enter the human food chain; (3) mammalian toxicology; (4) comparative pharmacokinetics (PK) and modeling strategies used to predict residue levels; and (5) emerging issues and management strategies.