Cargando…

Model-based optimal PEEP in mechanically ventilated ARDS patients in the Intensive Care Unit

BACKGROUND: The optimal level of positive end-expiratory pressure (PEEP) is still widely debated in treating acute respiratory distress syndrome (ARDS) patients. Current methods of selecting PEEP only provide a range of values and do not provide unique patient-specific solutions. Model-based methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Sundaresan, Ashwath, Chase, J Geoffrey, Shaw, Geoffrey M, Chiew, Yeong Shiong, Desaive, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167768/
https://www.ncbi.nlm.nih.gov/pubmed/21794116
http://dx.doi.org/10.1186/1475-925X-10-64
Descripción
Sumario:BACKGROUND: The optimal level of positive end-expiratory pressure (PEEP) is still widely debated in treating acute respiratory distress syndrome (ARDS) patients. Current methods of selecting PEEP only provide a range of values and do not provide unique patient-specific solutions. Model-based methods offer a novel way of using non-invasive pressure-volume (PV) measurements to estimate patient recruitability. This paper examines the clinical viability of such models in pilot clinical trials to assist therapy, optimise patient-specific PEEP, assess the disease state and response over time. METHODS: Ten patients with acute lung injury or ARDS underwent incremental PEEP recruitment manoeuvres. PV data was measured at increments of 5 cmH(2)O and fitted to the recruitment model. Inspiratory and expiratory breath holds were performed to measure airway resistance and auto-PEEP. Three model-based metrics are used to optimise PEEP based on opening pressures, closing pressures and net recruitment. ARDS status was assessed by model parameters capturing recruitment and compliance. RESULTS: Median model fitting error across all patients for inflation and deflation was 2.8% and 1.02% respectively with all patients experiencing auto-PEEP. In all three metrics' cases, model-based optimal PEEP was higher than clinically selected PEEP. Two patients underwent multiple recruitment manoeuvres over time and model metrics reflected and tracked the state or their ARDS. CONCLUSIONS: For ARDS patients, the model-based method presented in this paper provides a unique, non-invasive method to select optimal patient-specific PEEP. In addition, the model has the capability to assess disease state over time using these same models and methods.