Cargando…

A universal pathway for kinesin stepping

Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in proper order, generating a large number of successive reaction cycles. To study gating, we c...

Descripción completa

Detalles Bibliográficos
Autores principales: Clancy, Bason E., Behnke-Parks, William M., Andreasson, Johan O. L., Rosenfeld, Steven S., Block, Steven M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167932/
https://www.ncbi.nlm.nih.gov/pubmed/21841789
http://dx.doi.org/10.1038/nsmb.2104
Descripción
Sumario:Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in proper order, generating a large number of successive reaction cycles. To study gating, we created two mutant constructs with extended neck-linkers and measured their properties using single-molecule optical trapping and ensemble fluorescence techniques. Due to a reduction in the inter-head tension, the constructs access an otherwise rarely populated conformational state where both motor heads remain bound to the microtubule. ATP-dependent, processive backstepping and futile hydrolysis were observed under moderate hindering loads. Based on measurements, we formulated a comprehensive model for kinesin motion that incorporates reaction pathways for both forward and backward stepping. In addition to inter-head tension, we find that neck-linker orientation is also responsible for ensuring gating in kinesin.