Cargando…
Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
OBJECTIVE: As clinical text mining continues to mature, its potential as an enabling technology for innovations in patient care and clinical research is becoming a reality. A critical part of that process is rigid benchmark testing of natural language processing methods on realistic clinical narrati...
Autores principales: | de Bruijn, Berry, Cherry, Colin, Kiritchenko, Svetlana, Martin, Joel, Zhu, Xiaodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168309/ https://www.ncbi.nlm.nih.gov/pubmed/21565856 http://dx.doi.org/10.1136/amiajnl-2011-000150 |
Ejemplares similares
-
À la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge
por: Cherry, Colin, et al.
Publicado: (2013) -
Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task
por: Sarker, Abeed, et al.
Publicado: (2018) -
ExaCT: automatic extraction of clinical trial characteristics from journal publications
por: Kiritchenko, Svetlana, et al.
Publicado: (2010) -
Integrated Solution for Physical Activity Monitoring Based on Mobile Phone and PC
por: Lee, Mi Hee, et al.
Publicado: (2011) -
From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis with LeafMachine2
por: Weaver, William N., et al.
Publicado: (2023)