Cargando…

Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy

We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to constru...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith-Moritz, Andreia M, Chern, Mawsheng, Lao, Jeemeng, Sze-To, Wing Hoi, Heazlewood, Joshua L, Ronald, Pamela C, Vega-Sánchez, Miguel E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168417/
https://www.ncbi.nlm.nih.gov/pubmed/21851585
http://dx.doi.org/10.1186/1746-4811-7-26
Descripción
Sumario:We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.