Cargando…

Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy

We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to constru...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith-Moritz, Andreia M, Chern, Mawsheng, Lao, Jeemeng, Sze-To, Wing Hoi, Heazlewood, Joshua L, Ronald, Pamela C, Vega-Sánchez, Miguel E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168417/
https://www.ncbi.nlm.nih.gov/pubmed/21851585
http://dx.doi.org/10.1186/1746-4811-7-26
_version_ 1782211387307589632
author Smith-Moritz, Andreia M
Chern, Mawsheng
Lao, Jeemeng
Sze-To, Wing Hoi
Heazlewood, Joshua L
Ronald, Pamela C
Vega-Sánchez, Miguel E
author_facet Smith-Moritz, Andreia M
Chern, Mawsheng
Lao, Jeemeng
Sze-To, Wing Hoi
Heazlewood, Joshua L
Ronald, Pamela C
Vega-Sánchez, Miguel E
author_sort Smith-Moritz, Andreia M
collection PubMed
description We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.
format Online
Article
Text
id pubmed-3168417
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31684172011-09-08 Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy Smith-Moritz, Andreia M Chern, Mawsheng Lao, Jeemeng Sze-To, Wing Hoi Heazlewood, Joshua L Ronald, Pamela C Vega-Sánchez, Miguel E Plant Methods Methodology We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population. BioMed Central 2011-08-18 /pmc/articles/PMC3168417/ /pubmed/21851585 http://dx.doi.org/10.1186/1746-4811-7-26 Text en Copyright ©2011 Smith-Moritz et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
Smith-Moritz, Andreia M
Chern, Mawsheng
Lao, Jeemeng
Sze-To, Wing Hoi
Heazlewood, Joshua L
Ronald, Pamela C
Vega-Sánchez, Miguel E
Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title_full Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title_fullStr Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title_full_unstemmed Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title_short Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
title_sort combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by fourier transform near infrared spectroscopy
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168417/
https://www.ncbi.nlm.nih.gov/pubmed/21851585
http://dx.doi.org/10.1186/1746-4811-7-26
work_keys_str_mv AT smithmoritzandreiam combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT chernmawsheng combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT laojeemeng combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT szetowinghoi combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT heazlewoodjoshual combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT ronaldpamelac combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy
AT vegasanchezmiguele combiningmultivariateanalysisandmonosaccharidecompositionmodelingtoidentifyplantcellwallvariationsbyfouriertransformnearinfraredspectroscopy