Cargando…
Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network
OBJECTIVE: The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare...
Autores principales: | Kim, Sang Youn, Moon, Sung Kyoung, Jung, Dae Chul, Hwang, Sung Il, Sung, Chang Kyu, Cho, Jeong Yeon, Kim, Seung Hyup, Lee, Jiwon, Lee, Hak Jong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168800/ https://www.ncbi.nlm.nih.gov/pubmed/21927560 http://dx.doi.org/10.3348/kjr.2011.12.5.588 |
Ejemplares similares
-
Usefulness of resistive index on spectral Doppler ultrasonography in the detection of renal cell carcinoma in patients with end-stage renal disease
por: Kim, Sang Youn, et al.
Publicado: (2014) -
Diagnostic accuracy of F-18-Fluorocholine PET/CT and multiparametric MRI for prostate cancer
por: Kim, Jung Kwon, et al.
Publicado: (2022) -
Classification of Focal Prostatic Lesions on Transrectal Ultrasound (TRUS) and the Accuracy of TRUS to Diagnose Prostate Cancer
por: Lee, Ho Yun, et al.
Publicado: (2009) -
Weighted K-means support vector machine for cancer prediction
por: Kim, SungHwan
Publicado: (2016) -
Feasibility of artificial intelligence-based decision supporting system in tolvaptan prescription for autosomal dominant polycystic kidney disease
por: Shin, Jung Hyun, et al.
Publicado: (2023)