Cargando…

A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection

We have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of indi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicholson, George, Rantalainen, Mattias, Li, Jia V., Maher, Anthony D., Malmodin, Daniel, Ahmadi, Kourosh R., Faber, Johan H., Barrett, Amy, Min, Josine L., Rayner, N. William, Toft, Henrik, Krestyaninova, Maria, Viksna, Juris, Neogi, Sudeshna Guha, Dumas, Marc-Emmanuel, Sarkans, Ugis, Donnelly, Peter, Illig, Thomas, Adamski, Jerzy, Suhre, Karsten, Allen, Maxine, Zondervan, Krina T., Spector, Tim D., Nicholson, Jeremy K., Lindon, John C., Baunsgaard, Dorrit, Holmes, Elaine, McCarthy, Mark I., Holmes, Chris C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169529/
https://www.ncbi.nlm.nih.gov/pubmed/21931564
http://dx.doi.org/10.1371/journal.pgen.1002270
_version_ 1782211499762122752
author Nicholson, George
Rantalainen, Mattias
Li, Jia V.
Maher, Anthony D.
Malmodin, Daniel
Ahmadi, Kourosh R.
Faber, Johan H.
Barrett, Amy
Min, Josine L.
Rayner, N. William
Toft, Henrik
Krestyaninova, Maria
Viksna, Juris
Neogi, Sudeshna Guha
Dumas, Marc-Emmanuel
Sarkans, Ugis
Donnelly, Peter
Illig, Thomas
Adamski, Jerzy
Suhre, Karsten
Allen, Maxine
Zondervan, Krina T.
Spector, Tim D.
Nicholson, Jeremy K.
Lindon, John C.
Baunsgaard, Dorrit
Holmes, Elaine
McCarthy, Mark I.
Holmes, Chris C.
author_facet Nicholson, George
Rantalainen, Mattias
Li, Jia V.
Maher, Anthony D.
Malmodin, Daniel
Ahmadi, Kourosh R.
Faber, Johan H.
Barrett, Amy
Min, Josine L.
Rayner, N. William
Toft, Henrik
Krestyaninova, Maria
Viksna, Juris
Neogi, Sudeshna Guha
Dumas, Marc-Emmanuel
Sarkans, Ugis
Donnelly, Peter
Illig, Thomas
Adamski, Jerzy
Suhre, Karsten
Allen, Maxine
Zondervan, Krina T.
Spector, Tim D.
Nicholson, Jeremy K.
Lindon, John C.
Baunsgaard, Dorrit
Holmes, Elaine
McCarthy, Mark I.
Holmes, Chris C.
author_sort Nicholson, George
collection PubMed
description We have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1)H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10(−11)<p<2.8×10(−23)). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects.
format Online
Article
Text
id pubmed-3169529
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31695292011-09-19 A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection Nicholson, George Rantalainen, Mattias Li, Jia V. Maher, Anthony D. Malmodin, Daniel Ahmadi, Kourosh R. Faber, Johan H. Barrett, Amy Min, Josine L. Rayner, N. William Toft, Henrik Krestyaninova, Maria Viksna, Juris Neogi, Sudeshna Guha Dumas, Marc-Emmanuel Sarkans, Ugis Donnelly, Peter Illig, Thomas Adamski, Jerzy Suhre, Karsten Allen, Maxine Zondervan, Krina T. Spector, Tim D. Nicholson, Jeremy K. Lindon, John C. Baunsgaard, Dorrit Holmes, Elaine McCarthy, Mark I. Holmes, Chris C. PLoS Genet Research Article We have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1)H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10(−11)<p<2.8×10(−23)). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects. Public Library of Science 2011-09-08 /pmc/articles/PMC3169529/ /pubmed/21931564 http://dx.doi.org/10.1371/journal.pgen.1002270 Text en Nicholson et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Nicholson, George
Rantalainen, Mattias
Li, Jia V.
Maher, Anthony D.
Malmodin, Daniel
Ahmadi, Kourosh R.
Faber, Johan H.
Barrett, Amy
Min, Josine L.
Rayner, N. William
Toft, Henrik
Krestyaninova, Maria
Viksna, Juris
Neogi, Sudeshna Guha
Dumas, Marc-Emmanuel
Sarkans, Ugis
Donnelly, Peter
Illig, Thomas
Adamski, Jerzy
Suhre, Karsten
Allen, Maxine
Zondervan, Krina T.
Spector, Tim D.
Nicholson, Jeremy K.
Lindon, John C.
Baunsgaard, Dorrit
Holmes, Elaine
McCarthy, Mark I.
Holmes, Chris C.
A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title_full A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title_fullStr A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title_full_unstemmed A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title_short A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection
title_sort genome-wide metabolic qtl analysis in europeans implicates two loci shaped by recent positive selection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169529/
https://www.ncbi.nlm.nih.gov/pubmed/21931564
http://dx.doi.org/10.1371/journal.pgen.1002270
work_keys_str_mv AT nicholsongeorge agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT rantalainenmattias agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT lijiav agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT maheranthonyd agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT malmodindaniel agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT ahmadikouroshr agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT faberjohanh agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT barrettamy agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT minjosinel agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT raynernwilliam agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT tofthenrik agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT krestyaninovamaria agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT viksnajuris agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT neogisudeshnaguha agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT dumasmarcemmanuel agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT sarkansugis agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT donnellypeter agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT illigthomas agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT adamskijerzy agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT suhrekarsten agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT allenmaxine agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT zondervankrinat agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT spectortimd agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT nicholsonjeremyk agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT lindonjohnc agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT baunsgaarddorrit agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT holmeselaine agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT mccarthymarki agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT holmeschrisc agenomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT nicholsongeorge genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT rantalainenmattias genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT lijiav genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT maheranthonyd genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT malmodindaniel genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT ahmadikouroshr genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT faberjohanh genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT barrettamy genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT minjosinel genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT raynernwilliam genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT tofthenrik genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT krestyaninovamaria genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT viksnajuris genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT neogisudeshnaguha genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT dumasmarcemmanuel genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT sarkansugis genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT donnellypeter genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT illigthomas genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT adamskijerzy genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT suhrekarsten genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT allenmaxine genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT zondervankrinat genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT spectortimd genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT nicholsonjeremyk genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT lindonjohnc genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT baunsgaarddorrit genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT holmeselaine genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT mccarthymarki genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection
AT holmeschrisc genomewidemetabolicqtlanalysisineuropeansimplicatestwolocishapedbyrecentpositiveselection