Cargando…

Optimization of monosaccharide determination using anthranilic acid and 1-phenyl-3-methyl-5-pyrazolone for gastropod analysis

The protein-linked glycomes and, thereby, the range of individual monosaccharides of invertebrates differ from those of mammals due to a number of special modifications; therefore, it is necessary to adapt methods for monosaccharide analysis in order to cover these. We optimized the labeling procedu...

Descripción completa

Detalles Bibliográficos
Autores principales: Stepan, H., Staudacher, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169793/
https://www.ncbi.nlm.nih.gov/pubmed/21802397
http://dx.doi.org/10.1016/j.ab.2011.07.005
Descripción
Sumario:The protein-linked glycomes and, thereby, the range of individual monosaccharides of invertebrates differ from those of mammals due to a number of special modifications; therefore, it is necessary to adapt methods for monosaccharide analysis in order to cover these. We optimized the labeling procedure for anthranilic acid (AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP) and the subsequent separation of the labeled monosaccharides on high-performance liquid chromatography (HPLC), with the result that we were able to identify 26 different monosaccharides. The detection limit for anthranilic acid derivatives obtained was 65 fmol, and a reliable quantification of samples was possible up to 200 nmol under the tested conditions. PMP derivatives showed a significantly higher detection limit but allow quantification of larger sample amounts. Applying these methods on snails, their impressive set of monosaccharide constituents, including methylated sugars, was shown.