Cargando…

Molecular biocoding of insulin

This paper discusses cyberinformation studies of the amino acid composition of insulin, in particular the identification of scientific terminology that could describe this phenomenon, ie, the study of genetic information, as well as the relationship between the genetic language of proteins and theor...

Descripción completa

Detalles Bibliográficos
Autor principal: Kurić, Lutvo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170004/
https://www.ncbi.nlm.nih.gov/pubmed/21918626
Descripción
Sumario:This paper discusses cyberinformation studies of the amino acid composition of insulin, in particular the identification of scientific terminology that could describe this phenomenon, ie, the study of genetic information, as well as the relationship between the genetic language of proteins and theoretical aspects of this system and cybernetics. The results of this research show that there is a matrix code for insulin. It also shows that the coding system within the amino acid language gives detailed information, not only on the amino acid “record”, but also on its structure, configuration, and various shapes. The issue of the existence of an insulin code and coding of the individual structural elements of this protein are discussed. Answers to the following questions are sought. Does the matrix mechanism for biosynthesis of this protein function within the law of the general theory of information systems, and what is the significance of this for understanding the genetic language of insulin? What is the essence of existence and functioning of this language? Is the genetic information characterized only by biochemical principles or it is also characterized by cyberinformation principles? The potential effects of physical and chemical, as well as cybernetic and information principles, on the biochemical basis of insulin are also investigated. This paper discusses new methods for developing genetic technologies, in particular more advanced digital technology based on programming, cybernetics, and informational laws and systems, and how this new technology could be useful in medicine, bioinformatics, genetics, biochemistry, and other natural sciences.