Cargando…

Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer

PURPOSE: To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST). METHODS: Reverse phase protein array (RPP...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez-Angulo, Ana M, Hennessy, Bryan T, Meric-Bernstam, Funda, Sahin, Aysegul, Liu, Wenbin, Ju, Zhenlin, Carey, Mark S, Myhre, Simen, Speers, Corey, Deng, Lei, Broaddus, Russell, Lluch, Ana, Aparicio, Sam, Brown, Powel, Pusztai, Lajos, Symmans, W Fraser, Alsner, Jan, Overgaard, Jens, Borresen-Dale, Anne-Lise, Hortobagyi, Gabriel N, Coombes, Kevin R, Mills, Gordon B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170272/
https://www.ncbi.nlm.nih.gov/pubmed/21906370
http://dx.doi.org/10.1186/1559-0275-8-11
_version_ 1782211600719020032
author Gonzalez-Angulo, Ana M
Hennessy, Bryan T
Meric-Bernstam, Funda
Sahin, Aysegul
Liu, Wenbin
Ju, Zhenlin
Carey, Mark S
Myhre, Simen
Speers, Corey
Deng, Lei
Broaddus, Russell
Lluch, Ana
Aparicio, Sam
Brown, Powel
Pusztai, Lajos
Symmans, W Fraser
Alsner, Jan
Overgaard, Jens
Borresen-Dale, Anne-Lise
Hortobagyi, Gabriel N
Coombes, Kevin R
Mills, Gordon B
author_facet Gonzalez-Angulo, Ana M
Hennessy, Bryan T
Meric-Bernstam, Funda
Sahin, Aysegul
Liu, Wenbin
Ju, Zhenlin
Carey, Mark S
Myhre, Simen
Speers, Corey
Deng, Lei
Broaddus, Russell
Lluch, Ana
Aparicio, Sam
Brown, Powel
Pusztai, Lajos
Symmans, W Fraser
Alsner, Jan
Overgaard, Jens
Borresen-Dale, Anne-Lise
Hortobagyi, Gabriel N
Coombes, Kevin R
Mills, Gordon B
author_sort Gonzalez-Angulo, Ana M
collection PubMed
description PURPOSE: To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST). METHODS: Reverse phase protein array (RPPA) using 146 antibodies to proteins relevant to breast cancer was applied to three independent tumor sets. Supervised clustering to identify subgroups and prognosis in surgical excision specimens from a training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients with primary breast cancer. A score was constructed using ordinal logistic regression to quantify the probability of recurrence in the training set and tested in the test set. The score was then evaluated on 132 FNA biopsies of patients treated with NST to determine ability to predict pCR. RESULTS: Six breast cancer subgroups were identified by a 10-protein biomarker panel in the 712 tumor training set. They were associated with different recurrence-free survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score constructed using the 10 proteins in the training set was associated with RFS in both training and test sets (p = 3.2E-13, for test set). There was a significant association between the prognostic score and likelihood of pCR to NST in the FNA set (p = 0.0021). CONCLUSION: We developed a 10-protein biomarker panel that classifies breast cancer into prognostic groups that may have potential utility in the management of patients who receive anthracycline-taxane-based NST.
format Online
Article
Text
id pubmed-3170272
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Springer
record_format MEDLINE/PubMed
spelling pubmed-31702722011-09-22 Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer Gonzalez-Angulo, Ana M Hennessy, Bryan T Meric-Bernstam, Funda Sahin, Aysegul Liu, Wenbin Ju, Zhenlin Carey, Mark S Myhre, Simen Speers, Corey Deng, Lei Broaddus, Russell Lluch, Ana Aparicio, Sam Brown, Powel Pusztai, Lajos Symmans, W Fraser Alsner, Jan Overgaard, Jens Borresen-Dale, Anne-Lise Hortobagyi, Gabriel N Coombes, Kevin R Mills, Gordon B Clin Proteomics Research PURPOSE: To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST). METHODS: Reverse phase protein array (RPPA) using 146 antibodies to proteins relevant to breast cancer was applied to three independent tumor sets. Supervised clustering to identify subgroups and prognosis in surgical excision specimens from a training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients with primary breast cancer. A score was constructed using ordinal logistic regression to quantify the probability of recurrence in the training set and tested in the test set. The score was then evaluated on 132 FNA biopsies of patients treated with NST to determine ability to predict pCR. RESULTS: Six breast cancer subgroups were identified by a 10-protein biomarker panel in the 712 tumor training set. They were associated with different recurrence-free survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score constructed using the 10 proteins in the training set was associated with RFS in both training and test sets (p = 3.2E-13, for test set). There was a significant association between the prognostic score and likelihood of pCR to NST in the FNA set (p = 0.0021). CONCLUSION: We developed a 10-protein biomarker panel that classifies breast cancer into prognostic groups that may have potential utility in the management of patients who receive anthracycline-taxane-based NST. Springer 2011-07-08 /pmc/articles/PMC3170272/ /pubmed/21906370 http://dx.doi.org/10.1186/1559-0275-8-11 Text en Copyright ©2011 Gonzalez-Angulo et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Gonzalez-Angulo, Ana M
Hennessy, Bryan T
Meric-Bernstam, Funda
Sahin, Aysegul
Liu, Wenbin
Ju, Zhenlin
Carey, Mark S
Myhre, Simen
Speers, Corey
Deng, Lei
Broaddus, Russell
Lluch, Ana
Aparicio, Sam
Brown, Powel
Pusztai, Lajos
Symmans, W Fraser
Alsner, Jan
Overgaard, Jens
Borresen-Dale, Anne-Lise
Hortobagyi, Gabriel N
Coombes, Kevin R
Mills, Gordon B
Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title_full Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title_fullStr Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title_full_unstemmed Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title_short Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
title_sort functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170272/
https://www.ncbi.nlm.nih.gov/pubmed/21906370
http://dx.doi.org/10.1186/1559-0275-8-11
work_keys_str_mv AT gonzalezanguloanam functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT hennessybryant functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT mericbernstamfunda functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT sahinaysegul functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT liuwenbin functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT juzhenlin functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT careymarks functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT myhresimen functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT speerscorey functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT denglei functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT broaddusrussell functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT lluchana functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT apariciosam functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT brownpowel functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT pusztailajos functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT symmanswfraser functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT alsnerjan functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT overgaardjens functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT borresendaleannelise functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT hortobagyigabrieln functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT coombeskevinr functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer
AT millsgordonb functionalproteomicscandefineprognosisandpredictpathologiccompleteresponseinpatientswithbreastcancer