Cargando…

AKAP12 and AKAP5 form higher-order hetero-oligomers

BACKGROUND: The family of A-kinase-anchoring proteins, AKAPs, constitutes a group of molecular scaffolds that act to catalyze dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. AKAP5 (MW ~47 kDa) and AKAP12 (MW ~191 kDa) homo-o...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shujuan, Wang, Hsien-yu, Malbon, Craig C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170326/
https://www.ncbi.nlm.nih.gov/pubmed/21831305
http://dx.doi.org/10.1186/1750-2187-6-8
Descripción
Sumario:BACKGROUND: The family of A-kinase-anchoring proteins, AKAPs, constitutes a group of molecular scaffolds that act to catalyze dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. AKAP5 (MW ~47 kDa) and AKAP12 (MW ~191 kDa) homo-oligomerize, but whether or not such AKAPs can hetero-oligomerize into supermolecular scaffolds of increased complexity is unknown. RESULTS: Affinity chromatography using immobilized AKAPs as "bait" demonstrates unequivocally that AKAP5 and AKAP12 do form minimally hetero-dimers. Steric-exclusion chromatography of AKAP5 and AKAP12 mixtures revealed the existence of very large, supermolecular complexes containing both AKAPs. Docking of AKAP5 to AKAP12 was increased 4-fold by beta-adrenergic agonist stimulation. Overexpression of AKAP12 was found to potentiate AKAP5-mediated Erk1/2 activation in response to stimulation with beta-adrenergic agonist. CONCLUSION: AKAP5 and AKAP12 are capable of forming hetero-oligomeric supermolecular complexes that influence AKAP locale and function.