Cargando…
Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications
BACKGROUND: The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, met...
Autores principales: | Hoang, Stephen A, Xu, Xiaojiang, Bekiranov, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170335/ https://www.ncbi.nlm.nih.gov/pubmed/21834981 http://dx.doi.org/10.1186/1756-0500-4-288 |
Ejemplares similares
-
Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression
por: Xu, Xiaojiang, et al.
Publicado: (2010) -
ChIP-Enrich: gene set enrichment testing for ChIP-seq data
por: Welch, Ryan P., et al.
Publicado: (2014) -
Nonparametric Tests for Differential Histone Enrichment with ChIP-Seq Data
por: Wu, Qian, et al.
Publicado: (2015) -
A comparison of control samples for ChIP-seq of histone modifications
por: Flensburg, Christoffer, et al.
Publicado: (2014) -
An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
por: Strenkert, Daniela, et al.
Publicado: (2022)