Cargando…

Salt overload damages the glycocalyx sodium barrier of vascular endothelium

Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanic...

Descripción completa

Detalles Bibliográficos
Autores principales: Oberleithner, Hans, Peters, Wladimir, Kusche-Vihrog, Kristina, Korte, Stefanie, Schillers, Hermann, Kliche, Katrin, Oberleithner, Kilian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170475/
https://www.ncbi.nlm.nih.gov/pubmed/21796337
http://dx.doi.org/10.1007/s00424-011-0999-1
_version_ 1782211630833074176
author Oberleithner, Hans
Peters, Wladimir
Kusche-Vihrog, Kristina
Korte, Stefanie
Schillers, Hermann
Kliche, Katrin
Oberleithner, Kilian
author_facet Oberleithner, Hans
Peters, Wladimir
Kusche-Vihrog, Kristina
Korte, Stefanie
Schillers, Hermann
Kliche, Katrin
Oberleithner, Kilian
author_sort Oberleithner, Hans
collection PubMed
description Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse.
format Online
Article
Text
id pubmed-3170475
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-31704752011-09-26 Salt overload damages the glycocalyx sodium barrier of vascular endothelium Oberleithner, Hans Peters, Wladimir Kusche-Vihrog, Kristina Korte, Stefanie Schillers, Hermann Kliche, Katrin Oberleithner, Kilian Pflugers Arch Cardiovascular Physiology Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse. Springer-Verlag 2011-07-28 2011 /pmc/articles/PMC3170475/ /pubmed/21796337 http://dx.doi.org/10.1007/s00424-011-0999-1 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Cardiovascular Physiology
Oberleithner, Hans
Peters, Wladimir
Kusche-Vihrog, Kristina
Korte, Stefanie
Schillers, Hermann
Kliche, Katrin
Oberleithner, Kilian
Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title_full Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title_fullStr Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title_full_unstemmed Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title_short Salt overload damages the glycocalyx sodium barrier of vascular endothelium
title_sort salt overload damages the glycocalyx sodium barrier of vascular endothelium
topic Cardiovascular Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170475/
https://www.ncbi.nlm.nih.gov/pubmed/21796337
http://dx.doi.org/10.1007/s00424-011-0999-1
work_keys_str_mv AT oberleithnerhans saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT peterswladimir saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT kuschevihrogkristina saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT kortestefanie saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT schillershermann saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT klichekatrin saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium
AT oberleithnerkilian saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium