Cargando…
Salt overload damages the glycocalyx sodium barrier of vascular endothelium
Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170475/ https://www.ncbi.nlm.nih.gov/pubmed/21796337 http://dx.doi.org/10.1007/s00424-011-0999-1 |
_version_ | 1782211630833074176 |
---|---|
author | Oberleithner, Hans Peters, Wladimir Kusche-Vihrog, Kristina Korte, Stefanie Schillers, Hermann Kliche, Katrin Oberleithner, Kilian |
author_facet | Oberleithner, Hans Peters, Wladimir Kusche-Vihrog, Kristina Korte, Stefanie Schillers, Hermann Kliche, Katrin Oberleithner, Kilian |
author_sort | Oberleithner, Hans |
collection | PubMed |
description | Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse. |
format | Online Article Text |
id | pubmed-3170475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-31704752011-09-26 Salt overload damages the glycocalyx sodium barrier of vascular endothelium Oberleithner, Hans Peters, Wladimir Kusche-Vihrog, Kristina Korte, Stefanie Schillers, Hermann Kliche, Katrin Oberleithner, Kilian Pflugers Arch Cardiovascular Physiology Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse. Springer-Verlag 2011-07-28 2011 /pmc/articles/PMC3170475/ /pubmed/21796337 http://dx.doi.org/10.1007/s00424-011-0999-1 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Cardiovascular Physiology Oberleithner, Hans Peters, Wladimir Kusche-Vihrog, Kristina Korte, Stefanie Schillers, Hermann Kliche, Katrin Oberleithner, Kilian Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title | Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title_full | Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title_fullStr | Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title_full_unstemmed | Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title_short | Salt overload damages the glycocalyx sodium barrier of vascular endothelium |
title_sort | salt overload damages the glycocalyx sodium barrier of vascular endothelium |
topic | Cardiovascular Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170475/ https://www.ncbi.nlm.nih.gov/pubmed/21796337 http://dx.doi.org/10.1007/s00424-011-0999-1 |
work_keys_str_mv | AT oberleithnerhans saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT peterswladimir saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT kuschevihrogkristina saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT kortestefanie saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT schillershermann saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT klichekatrin saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium AT oberleithnerkilian saltoverloaddamagestheglycocalyxsodiumbarrierofvascularendothelium |