Cargando…
Probabilistic polynomial dynamical systems for reverse engineering of gene regulatory networks
Elucidating the structure and/or dynamics of gene regulatory networks from experimental data is a major goal of systems biology. Stochastic models have the potential to absorb noise, account for un-certainty, and help avoid data overfitting. Within the frame work of probabilistic polynomial dynamica...
Autores principales: | Dimitrova, Elena S, Mitra, Indranil, Jarrah, Abdul Salam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171177/ https://www.ncbi.nlm.nih.gov/pubmed/21910920 http://dx.doi.org/10.1186/1687-4153-2011-1 |
Ejemplares similares
-
Automated Termination Analysis of Polynomial Probabilistic Programs
por: Moosbrugger, Marcel, et al.
Publicado: (2021) -
Statistical ensemble of gene regulatory networks of macrophage differentiation
por: Castiglione, Filippo, et al.
Publicado: (2016) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Gene Regulatory Network Modeling of Macrophage Differentiation Corroborates the Continuum Hypothesis of Polarization States
por: Palma, Alessandro, et al.
Publicado: (2018) -
Reverse engineering gene regulatory network from microarray data using linear time-variant model
por: Kabir, Mitra, et al.
Publicado: (2010)