Cargando…
Inferring Time-Varying Network Topologies from Gene Expression Data
Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in or...
Autores principales: | Rao, Arvind, Hero, Alfred O, States, David J, Engel, James Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171343/ https://www.ncbi.nlm.nih.gov/pubmed/18309363 http://dx.doi.org/10.1155/2007/51947 |
Ejemplares similares
-
Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information
por: Rao, Arvind, et al.
Publicado: (2007) -
Statistical inference of the time-varying structure of gene-regulation networks
por: Lèbre, Sophie, et al.
Publicado: (2010) -
Inferring Epidemic Network Topology from Surveillance Data
por: Wan, Xiang, et al.
Publicado: (2014) -
Inference of Causal Networks from Time-Varying Transcriptome Data via Sparse Coding
por: Zhang, Kai, et al.
Publicado: (2012) -
Synchronization in STDP-driven memristive neural networks with time-varying topology
por: Yamakou, Marius E., et al.
Publicado: (2023)