Cargando…
Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization
We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probabil...
Autores principales: | Luna, Isabel Tienda, Huang, Yufei, Yin, Yufang, Padillo, Diego P Ruiz, Perez, M Carmen Carrion |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171349/ https://www.ncbi.nlm.nih.gov/pubmed/18309364 http://dx.doi.org/10.1155/2007/71312 |
Ejemplares similares
-
The Bayesian Expectation-Maximization-Maximization for the 3PLM
por: Guo, Shaoyang, et al.
Publicado: (2019) -
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms
por: Zeng, Gengsheng L., et al.
Publicado: (2019) -
Modelling Transcriptional Regulation with a Mixture of Factor Analyzers and Variational Bayesian Expectation Maximization
por: Lin, Kuang, et al.
Publicado: (2009) -
Modelling of time series microarray data using dynamic Bayesian network
por: Srinivasa, KG, et al.
Publicado: (2009) -
Bayesian nonlinear expectation for time series modelling and its application to Bitcoin
por: Siu, Tak Kuen
Publicado: (2022)