Cargando…
A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process
To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171362/ https://www.ncbi.nlm.nih.gov/pubmed/20976296 http://dx.doi.org/10.1155/2010/268513 |
_version_ | 1782211745518977024 |
---|---|
author | Chen, Jie Yiğiter, Ayten Wang, Yu-Ping Deng, Hong-Wen |
author_facet | Chen, Jie Yiğiter, Ayten Wang, Yu-Ping Deng, Hong-Wen |
author_sort | Chen, Jie |
collection | PubMed |
description | To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability. |
format | Online Article Text |
id | pubmed-3171362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-31713622011-09-13 A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process Chen, Jie Yiğiter, Ayten Wang, Yu-Ping Deng, Hong-Wen EURASIP J Bioinform Syst Biol Research Article To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability. Springer 2010-08-17 /pmc/articles/PMC3171362/ /pubmed/20976296 http://dx.doi.org/10.1155/2010/268513 Text en Copyright © 2010 Jie Chen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Jie Yiğiter, Ayten Wang, Yu-Ping Deng, Hong-Wen A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title | A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title_full | A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title_fullStr | A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title_full_unstemmed | A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title_short | A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process |
title_sort | bayesian analysis for identifying dna copy number variations using a compound poisson process |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171362/ https://www.ncbi.nlm.nih.gov/pubmed/20976296 http://dx.doi.org/10.1155/2010/268513 |
work_keys_str_mv | AT chenjie abayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT yigiterayten abayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT wangyuping abayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT denghongwen abayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT chenjie bayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT yigiterayten bayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT wangyuping bayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess AT denghongwen bayesiananalysisforidentifyingdnacopynumbervariationsusingacompoundpoissonprocess |