Cargando…
A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics
The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique—the Fast, Efficient, and Scalable k-m...
Autor principal: | Oyana, Tonny J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171363/ https://www.ncbi.nlm.nih.gov/pubmed/20689710 http://dx.doi.org/10.1155/2010/746021 |
Ejemplares similares
-
The New-Fangled Mind Cure Craze
Publicado: (1886) -
Omicron with threatened antagonistic consequences and are convoyed by new fangled risks – Correspondence
por: Mukerjee, Nobendu, et al.
Publicado: (2022) -
The New and Computationally Efficient MIL-SOM Algorithm: Potential Benefits for Visualization and Analysis of a Large-Scale High-Dimensional Clinically Acquired Geographic Data
por: Oyana, Tonny J., et al.
Publicado: (2012) -
A Critical Assessment of Geographic Clusters of Breast and Lung Cancer Incidences among Residents Living near the Tittabawassee and Saginaw Rivers, Michigan, USA
por: Guajardo, Olga A., et al.
Publicado: (2009) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013)